Gallery¶

Here we provide a gallery containing selected example results of several applications (a non-exhaustive list) using SPUX framework for Bayesian inference and uncertainty quantification.

Randomwalk¶

Domain: demo.
Authors: Jonas Šukys (Eawag, Switzerland).
Model: one-dimensional random walk (built-in).
Language: Python.
Cluster: EULER (ETH Zurich, Switzerland) - 129 cores.

A simple one-dimensional randomwalk with uncertain origin, drift, and the observation error.

_images/randomwalk_predictions-posterior.png

Posterior distribution of model predictions for the observational dataset. The shaded orange regions indicate the log-density of the posterior model predictions distribution at the respective time points, the brown line indicates the approximate MAP model prediction., the red line represents the exact model prediction values.

_images/randomwalk_posterior2d-origin-drift.png

Joint pairwise marginal posterior distribution of origin and drift, including the corresponding Markov chains from the sampler. Legend: thin semi-transparent gray lines and dots - concurrent chains, orange hexagons - histogram of the joint pairwise marginal posterior parameters samples, blue “+” - initial parameters, brown “o” - approximate MAP parameters, red “x” - the exact parameters.

Linear bucket¶

Domain: hydrology.
Authors: Andreas Scheidegger (Eawag, Switzerland).
Model: linear bucket model with stochastic forcing.
Language: R, with rpy2 bindings to Python.

Work in progress.

Stochastic inputs¶

Domain: hydrology.
Authors: Jonas Šukys (Eawag, Switzerland).
Model: hydrological model with stochastic inputs (built-in).
Language: Python, with numba compiled C code for computationally expensive parts.
Cluster: EULER (ETH Zurich, Switzerland) - 1121 cores.

Publication: Del Giudice, D. et al., (2016) “Describing the catchment-averaged precipitation as a stochastic process improves parameter and input estimation; Water Resources Research. John Wiley & Sons, Ltd, 52(4), pp. 3162–3186. doi: 10.1002/2015WR017871.

_images/hydro_errors-dataset-2.png

The first dataset and the associated heteroscedastic error model for the input (precipitation) and the output (discharge) measurements.

_images/hydro_predictions-posterior-dataset-2-unbiased.png

Plots of the posterior distribution of model predictions for an observational dataset above, including auxiliary posterior distributions for rainfall potential $\xi$, reservoir level S, and the water volume discrepancy $\Delta V$.

Work in progress.

Stochastic parameters¶

Domain: hydrology.
Authors: Marco Bacci, Jonas Šukys (Eawag, Switzerland).
Model: hydrological model with stochastic time-dependent parameters (Superflex).
Language: Fortran, with ctypes bindings of the compiled Fortran model library to Python.

Work in progress.

Prey-Predator¶

Domain: aquatic ecology.
Authors: Jonas Šukys, Nele Schuwirth, Peter Reichert (Eawag, Switzerland), Mira Kattwinkel (University of Koblenz-Landau, Germany).
Model: prey-predator model using stochastic individual based model with synthetic dataset (IBM-Bugs).
Language: Java, with JPype bindings to Python.
Cluster: EULER (ETH Zurich, Switzerland) - up to 1000 cores.

Publication (preprint available at http://arxiv.org/abs/1711.01410):

Šukys, J. and Kattwinkel, M.
"SPUX: Scalable Particle Markov Chain Monte Carlo
for uncertainty quantification in stochastic ecological models".
Advances in Parallel Computing - Parallel Computing is Everywhere,
IOS Press, (32), pp. 159–168, 2018.
_images/mcmc-ibm-2000p-100s-200c_posterior_prey_kDens_predator_kDens.png

Marginal posterior distribution of prey_kDens and predator_kDens parameters, including the corresponding MCMC chain from the sampler. Legend: green “+” - initial parameters.

Work in progress.

River invertebrates¶

Domain: aquatic ecology.
Authors: Marco Bacci, Nele Schuwirth, Peter Reichert, Jonas Šukys (Eawag, Switzerland) Mira Kattwinkel (U Koblenz-Landau, Germany).
Model: river invertebrates mesocosm modeling using stochastic IBMs (IBM-Bugs).
Model: Java, with JPype bindings to Python.
Cluster: EULER (ETH Zurich, Switzerland) - 736 cores.

Work in progress.

DATALAKES¶

Domain: hydrology and data science.
Authors: Artur Safin, Jonas Šukys (Eawag, Switzerland).
Model: DATALAKES - a scalable UQ framework for predicting lake dynamics (MITgcm).
Language: Fortran, with ctypes bindings of the compiled Fortran model library to Python.
Cluster: Daint (Swiss Supercomputing Center (CSCS), Switzerland).

Work in progress.

In-stream herbicides¶

Domain: aquatic ecology.
Authors: Peter Reichert, Fabrizio Fenizia, Lorenz Ammann, Jonas Šukys (Eawag, Switzerland).
Model: in-stream herbicide concentration dynamics (Superflex).
Language: Fortran, with ctypes bindings of the compiled Fortran model library to Python.

Work in progress.

Urban hydrology¶

Domain: urban hydrology.
Authors: Joao Leitao, Andreas Scheidegger, Jörg Rieckermann, Jonas Šukys.
Model: urban hydrologic model (SWMM).
Language: C, with Swig wrapper for Python.

Work in progress.

Solar dynamo¶

Domain: physics and data science

BISTOM - calibration of the solar dynamo simulations.

Work in progress.

Logo

Navigation

  • Introduction
  • Installation
  • Tutorial
  • Customization
  • Reference
  • Gallery
    • Randomwalk
    • Linear bucket
    • Stochastic inputs
    • Stochastic parameters
    • Prey-Predator
    • River invertebrates
    • DATALAKES
    • In-stream herbicides
    • Urban hydrology
    • Solar dynamo
  • Contributing
  • Parallelization
  • Credits
  • History

Related Topics

  • Documentation overview
    • Previous: spux.utils package
    • Next: Contributing

Quick search

©2018-2020 Scientific Computing Group at Eawag and SIS ID at ETH Zurich. | Powered by Sphinx 1.8.5 & Alabaster 0.7.12 | Page source