spux Documentation
Release 0.4.0

Scientific Computing Group at Eawag and SIS ID at ETH Zurich

Nov 04, 2019

Contents

1 Contents 3
.1 Introduction e e e e e 3
LI Summary e e e e e e e e e e e e e e 3

1.1.2 Mathematical concepts 3

1.1.3 Algorithms o o e 4

1.2 Installation e e e e e e 4
1.2.1 Main prerequiSiteS . . . v v v v v e 4

1.2.2 Additional prerequiSites L L e e e e e e e e e e 7

1.2.3 Stablerelease L e e e e e e e 7

1.2.4 Latestrelease L e e e e e e e 7

1.2.5 FromsSOUICES o v v v it it ittt e e e e e e e e e 8

1.3 Tutorial o L e e e e 8
L3100 OVerview o i e e e e e e 8
13,11 Editor e 8

1.3.1.2 Model stochasticity 8

1.3.1.3 Replicate datasets 9

1.3.2 Randomwalk (serial) e e e 9
1.3.2.1 Modeldescription i e e e e e e e e e 9

1.3.2.2 SPUX configuration e 10

1.3.2.3 SPUXresults e e e e 15

1.3.24 SPUXperformance ittt e 24

1.3.2.5 Continue sampling v v i e e e e e e e e e e e 25

1.3.2.6 Informative output i e e e e e e e e e e e 25

1.3.2.7 Profiling e 25

1.3.3 Randomwalk (parallel) e 25
1.3.3.1 SPUXEXECULOrS . . « « v v v v e e e e e et e e e e e e e e 26

1.3.3.2 Launching parallel SPUX 26

1.3.3.3 Remark on MPI libraries 28

1.3.34 Remarkonexecutors e 28

1.33.5 Remarkonconnectors oo vttt e e e e 28

1.3.3.6 Remarkonreplicates 29

1.3.3.7 Performance progressot i e e e 29

1.3.3.8 Parallel scaling e e e e 29

1.3.3.9 Profiling (parallel) e 29

1.4 CuStomization o v it e 29
141 Addingamodel e 30

1.5

1.4.1.1 Modeltestscript o v v e e e e e e 30

1.4.1.2 Model executioncontrol L. 30

1.4.1.3 Model scope variables 31
1.4.14 Modelsandboxing 31

1.4.1.5 Model stochasticity o o v i e e e 32
1.4.1.6 Initialmodelstate 32

1.4.1.7 Auxiliary predictions L e e e e e e e e 32

1.4.1.8 Inputsets formodels e 32

1.4.1.9 Model state serialization 33
1.4.1.10 Serialization test sCript oL 33

142 SPUXEXECUOIS . . .« v v v vt v e e i e e e e e e e e e e e e e e 34
1.43 Parallelmodels 34
1.4.3.1 Parallelize serial model 34

1.4.3.2 Parallel model executor 35

1.43.3 Model communicators oL .o e e e e e e e 35

1.44 Adding adistribution e 35
1.45 Addinganerror e e e e e e e 36
1.4.6 Setting variable types e e e e e e e e e e e e 36
1.47 Addingasampler e e e e e e e e e e e e 36
1.4.8 Addingalikelihood 37
Reference L . 37
1.5.1 spuxpackage e 37
1.5.1.1 Subpackages o e e e e e e e e e e 37
1.5.1.1.1 spux.distributions package 37

1.5.1.1.1.1 Submodules oo 37

1.5.1.1.1.2 spux.distributions.distribution module 37

1.5.1.1.1.3 spux.distributions.multivariate module 38

1.5.1.1.1.4 spux.distributions.tensormodule 38

1.5.1.1.2 spux.drivers package e 39

1.5.1.1.2.1 Submodules 39

1.5.1.1.2.2 spux.drivers.javamoduleo L L 39

1.5.1.1.3 spux.executors package L. 39

1.5.1.1.3.1 Subpackages. 39

1.5.1.1.3.2 spux.executors.balancers package 39

1.5.1.1.33 Submodules 39

1.5.1.1.3.4 spux.executors.balancers.adaptive module 39

1.5.1.1.3.5 spux.executors.balancers.balancermodule 40

1.5.1.1.3.6 spux.executors.mpidpy package 40

1.5.1.1.3.7 Subpackages 40

1.5.1.1.3.8 spux.executors.mpi4py.connectors package 40

1.5.1.1.3.9 Submodules 40

1.5.1.1.3.10 spux.executors.mpi4py.connectors.legacy module 40

1.5.1.1.3.11 spux.executors.mpidpy.connectors.spawn module 41

1.5.1.1.3.12 spux.executors.mpidpy.connectors.split module 41

1.5.1.1.3.13 spux.executors.mpidpy.connectors.utils module 42

1.5.1.1.3.14 spux.executors.mpidpy.connectors.worker module 42

1.5.1.1.3.15 Submodules 42

1.5.1.1.3.16 spux.executors.mpidpy.ensemble module 42

1.5.1.1.3.17 spux.executors.mpidpy.ensemble_contract module 42

1.5.1.1.3.18 spux.executors.mpidpy.ensemble_resample module 42

1.5.1.1.3.19 spux.executors.mpidpy.model module 42

1.5.1.1.3.20 spux.executors.mpidpy.poolmodule 42

1.5.1.1.3.21 spux.executors.mpidpy.pool_contract module 42

1.5.1.1.3.22 Submodules 42

1.5.1.1.3.23 spux.executors.executormodule 42

1.5.1.1.3.24 spux.executors.serialmodule 42
1.5.1.1.4 spuxdopackage 42
1.5.1.1.4.1 Submodules oo 42
1.5.1.1.42 spux.io.checkpointermodule 42
1.5.1.1.4.3 spux.io.dumpermoduleo oL 43
1.5.1.1.4.4 spux.io.formattermodule 43
1.5.1.1.4.5 spux.o.doadermodule L Lo 43
1.5.1.1.4.6 spux.io.parametersmodule 43
1.5.1.1.4.7 spux.ioreportmoduleo oL o oL 43
1.5.1.1.5 spux.ikelihoods package 44
1.5.1.1.5.1 Submodules 44
1.5.1.1.5.2 spux.likelihoods.direct module 44
1.5.1.153 spux.likelihoods.ensemble module 44
1.5.1.1.5.4 spux.likelihoods.likelihood module 44
1.5.1.1.5.5 spux.likelihoods.pf module 44
1.5.1.1.5.6 spux.likelihoods.replicates module 44
1.5.1.1.6 spux.models package 44
1.5.1.1.6.1 Submodules 44
1.5.1.1.6.2 spux.models.ibmmodule 44
1.5.1.1.6.3 spux.models.model module 44
1.5.1.1.6.4 spux.models.randomwalk module 44
1.5.1.1.6.5 spux.models.randomwalk_numbamodule 44
1.5.1.1.6.6 spux.models.straightwalk module 44
1.5.1.1.7 spux.plotpackage 44
1.5.1.1.7.1 Submodules 44
1.5.1.1.7.2 spux.plotmplmodule 44
1.5.1.1.7.3 spux.plot.mpl_palette_ pfmodule 44
1.5.1.1.7.4 spux.plot.mpl_utilsmodule 44
1.5.1.1.7.5 spux.plot.profilemodule, . 45
1.5.1.1.8 spux.processespackage 45
1.5.1.1.8.1 Submodules 45
1.5.1.1.8.2 spux.processes.ornsteinuhlenbeck module 45
1.5.1.1.8.3 spux.processes.precipitationmodule L. 45
1.5.1.1.8.4 spux.processes.wastewater module 45
1.5.1.1.9 spux.reportpackage 46
1.5.1.1.9.1 Submodules 46
1.5.1.1.9.2 spux.report.generate module 46
1.5.1.1.10 spux.samplers package 46
1.5.1.1.10.1 Submodules 46
1.5.1.1.10.2 spux.samplers.emceemodule 46
1.5.1.1.10.3 spux.samplers.forecast module 46
1.5.1.1.10.4 spux.samplers.mcmcmodule 46
1.5.1.1.10.5 spux.samplers.sampler module 46
1.5.1.1.11 spuxwatilspackage e 46
I5.1.L1.L11.1 Submodules 46
1.5.1.1.11.2 spux.utils.annotate module 46
1.5.1.1.11.3 spux.utils.assignmodule 46
1.5.1.1.11.4 spux.utils.debug_inparallelmodule 46
1.5.1.1.11.5 spux.utils.environment module 46
1.5.1.1.11.6 spux.utils.evaluations module 46
1.5.1.1.11.7 spux.utils.progressmodule 47
1.5.1.1.11.8 spux.utils.sandbox module 47
1.5.1.1.11.9 spux.utils.seed module 47

1.6

1.7

1.8

1.9

1.10

1.5.1.1.11.10 spux.utils.serialize module

1.5.1.1.11.11 spux.utils.setupmodule

1.5.1.1.11.12 spux.utils.shellmodule

1.5.1.1.11.13 spux.utils.synthesize module

1.5.1.1.11.14 spux.utils.testingmodule

1.5.1.1.11.15 spux.utils.timermodule

1.5.1.1.11.16 spux.utils.timing module

1.5.1.1.11.17 spux.utils.transforms module

1.5.1.1.11.18 spux.utils.traversemodule

Gallery e e e e
1.6.1 Randomwalk
1.6.2 Linearbucket
1.6.3 Stochasticinputs v v i i e e e e e e e e e e e e e
1.6.4 Stochastic parameters Lt c e e e e e e e e e
1.6.5 Prey-Predator e e e
1.6.6 Riverinvertebrates e e e e
1.6.7 DATALAKES
1.6.8 In-stream herbicides
1.6.9 Urban hydrology e e e e e e e
1.6.10 Solardynamo e
Contributing L e e e e e e
1.7.1 The SPUX’0NIC WAY o v v v ittt et e e e e e e e e e e e e e
1.7.2 Typesof contributions i i e e e e e e e e e e e e e
1.7.2.1 Reportbugs e e e e e e e e

1722 FiXbu@s o o o e e e e e e e e e

1.7.2.3 Implement features L e

1.7.2.4 Write documentation e e e e

1.72.5 Submitfeedback o o

173 Getstarted!
174 MergerequestS ottt e e e e e e e e e e e e e
L7.5 TIPS . v o o e e e e e e e e e e e
1.7.6 Deploying o o o e
Parallelization L e e e
1.8.1 Communication Patterns v v v v v v e e e e e e e e e e e e e e e e e
1.8.2 Profiling and scaling e e e
Credits o e e
1.9.1 DevelopmentLead
1.9.2 Contributors e e e e e
1.9.3 Acknowledgments e e e e e e e e
History . . . o o e e e e e e
1.10.1 0.4.0 (2019-06-12) o e e e
1.10.2 0.3.0 (2019-04-10) e e e e e e e
1.10.3 0.2.1 (2019-03-06) o e e e e e e

2 Indices and tables

Python Module Index

Index

61

63

65

spux Documentation, Release 0.4.0

SPUX - “Scalable Package for Uncertainty Quantification”.

SPUX is a modular framework for Bayesian inference and uncertainty quantification.

SPUX can be coupled with linear and nonlinear, deterministic and stochastic models.

SPUX supports model in any programming language (e.g. Python, R, Julia, C/C++, Fortran, Java).
SPUX scales effortlessly from serial run to parallel high performance computing clusters.

SPUX is application agnostic, with current examples in environmental dataset sciences.

SPUX is actively developed at Eawag, Swiss Federal Institute of Aquatic Science and Technology,
by researchers in the High Performance Scientific Computing Group, https://www.eawag.ch/sc.

For the scientific website of the SPUX project, please refer to https://eawag.ch/spux.

Documentation is available at https://spux.readthedocs.io.
Source code repository is available at https://gitlab.com/siam-sc/spux.

You are welcome to browse through the results gallery of the models already coupled to spux at
https://spux.readthedocs.io/en/stable/gallery.html.

This is free software, distributed under Apache (v2) License.

If you use this software, please cite (preprint available at http://arxiv.org/abs/1711.01410):

Sukys, J. and Kattwinkel, M.

"SPUX: Scalable Particle Markov Chain Monte Carlo

for uncertainty quantification in stochastic ecological models".
Advances in Parallel Computing - Parallel Computing is Everywhere,
I0S Press, (32), pp. 159-168, 2018.

Contents 1

https://pypi.python.org/pypi/spux
https://spux.readthedocs.io/en/latest/?badge=stable
https://www.eawag.ch/sc
https://eawag.ch/spux
https://spux.readthedocs.io
https://gitlab.com/siam-sc/spux
https://spux.readthedocs.io/en/stable/gallery.html
http://arxiv.org/abs/1711.01410

spux Documentation, Release 0.4.0

2 Contents

CHAPTER 1

Contents

1.1 Introduction

SPUX stands for “Scalable Package for Uncertainty Quantification”.

1.1.1 Summary

SPUX is a modular framework for Bayesian inference and uncertainty quantification in linear and nonlinear, determin-
istic and stochastic models. SPUX can be coupled to any model written in any programming language (e.g. Python, R,
Julia, C/C++, Fortran, Java). SPUX scales effortlessly from serial runs on a personal computer to parallel high perfor-
mance computing clusters. SPUX is application agnostic, with current examples available in the field of environmental
data sciences.

In the near future, multi-level methods (e.g. ML(ET)PF, MLCV) will be included in SPUX to enable significant
algorithmic acceleration of the inference and uncertainty quantification for models that support multiple resolution
configurations.

An earlier prototype of spux was already described in a technical paper (preprint available at http://arxiv.org/abs/1711.
01410):

éukys, J. and Kattwinkel, M.

"SPUX: Scalable Particle Markov Chain Monte Carlo

for uncertainty quantification in stochastic ecological models".
Advances in Parallel Computing - Parallel Computing is Everywhere,
I0S Press, (32), pp. 159-168, 2018.

To give you a brief introduction regarding difference aspects of SPUX, we first begin with the mathematical concepts
of the underlying scientific problem addressed by this framework.

1.1.2 Mathematical concepts

Here we briefly introduce mathematical concepts used in the Bayesian inference and uncertainty quantification.

http://arxiv.org/abs/1711.01410
http://arxiv.org/abs/1711.01410

spux Documentation, Release 0.4.0

Bayesian Inference
0.07
0.06
parameters observations :§0.05 1
Bayes theorem: f(6|D,M) o« L(D|0,M) () Ezzz : posterior
e prior | |
Data: D = {NgPs, ..., N§Ps} 22? -

o . . O VAN N |
Likelihood: L(D|6,M) = L(NZs, ..., N¢bs|9, M) ® s @ 100 10 10 10
Complex or non-linear models M: Stochastic models M:
likelihood unavailable analytically in @ marginalization over all

sampling techniques often used possible realizations needed
Hard to solve (?) L(D|6, M) = J-Lobs(DIO»M; w)p(w)dw

Even harder!

Fig. 1: Bayesian inference: updated the prior distribution of the model parameters to a posterior distribution given
model observations (dataset). Bayesian theorem allows us to evaluate (or sample from) the posterior parameter distri-
bution by computing the likelihood of the dataset given candidate model parameters.

1.1.3 Algorithms
1.2 Installation

Python package spux is available at PyPI repository: https://pypi.org/project/spux.

1.2.1 Main prerequisites

* Python, we recommend using Python 3.

in macOS, pre-installed

in Debian/Ubuntu, pre-installed

in Windows, follow instructions in https://www.python.org/downloads/windows/
— to test, run in terminal: python3 -V
* Open MPI:
— in macOS with Homebrew, in terminal: brew open-mpi
— in Debian/Ubuntu with Apt, in terminal: apt—-get install openmpi-bin libopenmpi-dev
— in Windows, the parallel version of the framework has not been tested yet

* SPUX Package, in terminal:

4 Chapter 1. Contents

https://pypi.org/project/spux
https://www.python.org/downloads/windows/

spux Documentation, Release 0.4.0

Markov Chain Monte Carlo (MCMC) sampling

choose initial
parameter set @,

MCcMC Estimate posterior by sampling:

A
Likelihood

compute likelihood of observations L,,

given model parameters @,,

calculate acceptance probability

Lm _7(0m))
"Lin-1 T(Om-1)

a = min (1

observations

2ouejdadoe sijodosa|p

\ 4

save @,, in chain of
accepted parameters

time

draw new @,,

M =M pasedon 8, |

stochastic models?

Fig. 2: Markov Chain Monte Carlo (MCMC) for deterministic models M - likelihood of model parameters can be
estimated by simply executing the model.

PMCMC: Particle Filtering for MCMC

PF initialize p replicates of the
model with parameters 8 A
v
for all observations at times ¢; .
run models up to
00000 next observation g i
EEER’ ! < 3
calculate weights C N
O c@Qe as P°PS @
0
l\ i L\ I{b d ©
resample based on
@ @ @ O O normalized weights
v N
estimate likelihood i

L~TI(1/pE B2S) time

PF scheme: Mira Kattwinkel

Fig. 3: Particle Filter (PF) of the stochastic model realizations in order to estimate the likelihood of the model parame-
ters marginalized over all possible scenarios. Note that particles (stochastic model realizations) are adaptively filtered
using dataset, making this algorithm very computationally efficient.

1.2. Installation 5

spux Documentation, Release 0.4.0

MCMC choose initia PF initialize p replicates of the
parameter set 0., .
model with parameters 6

!

for all observations at times tj

Likelihood
compute likelihood of observations L,,

given model parameters ,, O O O O O run models up to

next observation

R 1

< —
) calculate acceptance probability O O calculate weights
3 (4 lm m6m) O o ® obs
.8 a = min (1, P n(em—l)) as P]l
. NN 1
a resample based on
(@]
g O O O O O normalized weights
= 1
2 s T
save @, in chain of estimate likelihood
accepted parameters L~TI(1/pX pjol.bs)
@ draw new 6, | |
based on 8, ; Particles are REPLICATED and DELETED

Fig. 4: Markov Chain Monte Carlo (MCMC) and Particle Filtering used in the SPUX framework. Notice, that in most
of the real applications using SPUX, an adaptive ensemble affine invariant sampler (EMCEE) with multiple chains is
used instead of the conventional single-chain Metropolis-Hastings MCMC.

6 Chapter 1. Contents

spux Documentation, Release 0.4.0

$ pip3 install --user --upgrade pip
$ pip3 install --user spux

Remember, that if you reinstall or somehow else change your MPI library, you must reinstall mpi4py package by
running in terminal:

$ pip3 install --user —--upgrade pip
$ pip3 install --user —--upgrade —--force-reinstall --no-cache-dir mpidpy

1.2.2 Additional prerequisites

Depending on the programming language of your model, additional prerequisites might be needed:
e Rdriver: R package, and in terminal: $ pip3 install --user rpy2,
e Julia driver: Julia package PyCall, and in terminal: $ pip3 install —--user julia,
* Fortran driver: Fortran compiler (if needed), and in terminal: $ pip3 install —--user ctypes,
* C/C++ driver: C/C++ compiler (if needed), and Swig (http://www.swig.org/) code wrapper,
* Java driver: Java SDK, and in terminal: $ pip3 install --user Jpypel.

If you additionally want the generated LaTeX report source files to be compiled to the PDF files, then you will need to
have the pdflatex installed (the procedure varies depending on the OS and distribution and hence is not described
here).

1.2.3 Stable release

To install spux, run this command in your terminal:

$ pip install spux

This is the preferred method to install spux, as it will always install the most recent stable release.
If you don’t have pip installed, this Python installation guide can guide you through the process.

To update when a newer release becomes available, run in your terminal:

$ pip install --user --upgrade spux

1.2.4 Latest release

To install the latest development version of spux, run these commands in your terminal:

$ git clone --single-branch --branch test https://gitlab.com/siam-sc/spux.git
$ cd spux
$ python setup.py install --user

To update when a newer version of the test branch becomes available, run in your terminal (within the spux
directory from above):

$ git pull
$ python setup.py install —--user

1.2. Installation 7

http://www.swig.org/
https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/

spux Documentation, Release 0.4.0

If you use latest version of SPUX, please also refer to the latest version of documentation at: https://spux.readthedocs.
io/en/latest/.

1.2.5 From sources

The sources for spux can be downloaded from the https://gitlab.com/siam-sc/spux.

You can also clone the public repository:

’$ git clone https://gitlab.com/siam-sc/spux.git

1.3 Tutorial

This section guides you through a tutorial for an example model and usage pattern of SPUX. For peculiarities regarding
the coupling your model with the SPUX framework, refer to Customization.

1.3.1 Overview

Commands should be executed in Python terminal, or inside a Python script, or in a Jupyter notebook. To learn how
to write your own custom scripts and configure spux, first read through the rest of this section and take a look at the
examples suite.

1.3.1.1 Editor

Try one of the following cross-platform editors (you can also use Vim or Emacs, of course):
* Spyder - similar Ul as R,
e PyCharm - proprietary,

* VS Code - works very well with GitLab integration extensions - give it a try!

1.3.1.2 Model stochasticity

SPUX supports two types of models for the Bayesian inference:
* Deterministic - model evaluation is uniquely determined by the inputset and parameters,
* Stochastic - model evaluation is additionally driven by a random variable/process.

Bayesian inference of model parameters for deterministic models is often less difficult, since a simple so-called
Direct likelihood can be used, which, for any given parameters, is analytically computed from the specified er-
ror model. Error model describes a probabilistic distribution for observational data, conditional on the true model
evaluation (referred to as model prediction).

For stochastic models, in addition to uncertain model parameters, also the uncertain model evaluations (predictions,
sometimes referred to as states) need to be inferred. To this end, the error model alone is often not sufficient to
analytically compute the marginal likelihood of a given dataset and model parameters. Currently SPUX supports the
Particle Filter approximation of such marginal likelihood, used in this tutorial.

As SPUX framework has a focus on the Bayesian inference in stochastic models, in the present tutorial we also focus on
the stochastic models, with an example of a Randomwalk. Straightwalk is another educational model available
in SPUX, which is simply a stripped down version (with the randomness eliminated) of the stochastic Randomwalk

8 Chapter 1. Contents

https://spux.readthedocs.io/en/latest/
https://spux.readthedocs.io/en/latest/
https://gitlab.com/siam-sc/spux
https://gitlab.com/siam-sc/spux/tree/test/examples

spux Documentation, Release 0.4.0

model. To learn more about the Straightwalk and how to use SPUX with deterministic models, we recommend
to read the tutorial below and then refer to analogous example scripts in the respective example directory at: exam-
ples/straightwalk/.

1.3.1.3 Replicate datasets

In some applications, multiple replicates of observational datasets are available, with each replicate dataset corre-
sponding to the same (assumed to be unknown) model parameter values, but different independent stochastic model
evaluations (for instance, w.r.t. the seed of the pseudo-random number generator.) Examples of such replicates could
be independent datasets from several consecutive sufficiently separated time periods, or even several simultaneously
collected measurements from independent experimental sites.

If this is the case, each dataset (and the respective model inputset) can be treated statistically independently but at the
same time fully integrated into the SPUX framework by simply merging individual respective (direct or marginal) like-
lihoods into a single Replicates likelihood. For the sake of simplicity, this tutorial only considers a single dataset.
To learn more about how to use SPUX with multiple independent replicate datasets, we recommend to read the tuto-
rial below and then refer to analogous example scripts in the respective example directory at: examples/randomwalk-
replicates/.

1.3.2 Randomwalk (serial)

Here we provide an elaborate description of the SPUX framework setup and simulation execution for an example of a
simple Randomwalk model.

1.3.2.1 Model description

The model describes a stochastic one-dimensional walk on integers, with a prescribed (let’s say, genetically)
stepsize. Starting at the location given by the origin parameter, a randomwalk takes a random step of size
stepsize either to the left or to the right, with direction distribution depending on the drift parameter. Inac-
curate observations at several times of the randomwalk’s position are available, with unknown observational error
distribution, assumed to be Gaussian with zero mean and standard deviation given by the parameter $\sigmas.

All files required throughout this example (and some more) could be found in examples/randomwalk/, which we
assume is the current working directory where commands are executed. This means that all import module state-
ments will import the corresponding module . py script from this directory (or an already installed external Python
module). All imports starting with from spux import ... import modules that are built-in in the spux module,
and we use relative links starting with spux/ for a corresponding file in the GitLab repository.

The randomwalk model is a built-in module in spux and can be found at spux/models/randomwalk.py:

from scipy import stats
import numpy

from spux.models.model import Model
from spux.utils.annotate import annotate

class Randomwalk (Model) :

"""Class for Randomwalk model."""
no need for sandboxing
sandboxing = 0

construct model
def _ _init___ (self, stepsize=1):

(continues on next page)

1.3. Tutorial 9

https://gitlab.com/siam-sc/spux/tree/test/examples/straightwalk/
https://gitlab.com/siam-sc/spux/tree/test/examples/straightwalk/
https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk-replicates/
https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk-replicates/
https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/
https://gitlab.com/siam-sc/spux/tree/test/spux/
https://gitlab.com/siam-sc/spux/tree/test/spux/models/randomwalk.py

spux Documentation, Release 0.4.0

(continued from previous page)

self.stepsize = stepsize
initialize model using specified 'inputset' and 'parameters'
def init (self, inputset, parameters):

"""Initialize model using specified 'inputset' and 'parameters'."""

base class 'init (...)' method - OPTIONAL
Model.init (self, inputset, parameters)

self.position = parameters ["origin"]
self.drift = parameters ["drift"]

self.time = 0
run model up to specified 'time' and return the prediction
def run (self, time):

"""Run model up to specified 'time' and return the prediction."""

base class 'run (...)' method — OPTIONAL
Model.run (self, time)

pre—-generate random variables for all steps

steps = time - self.time
distribution = stats.uniform (loc=-1, scale=2)
rvs = distribution.rvs (steps, random_state=self.rngqg)

update position (e.g., perform walk)
directions = numpy.where (rvs < self.drift, 1, -1)
self.position += self.stepsize * numpy.sum (directions)

update time
self.time = time

return results
return annotate ([self.position], ['position'], time)

In the source code above, Randomwalk class has a constructor (note the underscores!) __init_ (self, ...
), which is called when constructing model by model = Randomwalk (stepsize=1). The argument self
is a pointer to the object itself, analogous to this in C/C++. Additional methods include:

e init (self, inputset, parameters) - initialize model with the specified inputset and
parameters,

e run (self, time) -run model from the current time up to the specified t ime.

Note, that the “current time” in the above is setin init (...) or the previous call of run (...) and is handled
differently in different models (in this example: simply saving it to self.time).

The annotate (values, labels, time) method packages model predictions stored in values to a
pandas.DataFrame with the specified list of 1abels for the elements if the values and with the requested
time.

1.3.2.2 SPUX configuration

Apart from the actual model, we also need to specify several auxiliary configuration files for observational datasets,
statistical error model (i.e. a probabilistic distribution of the observations conditional on the specified model pre-

10 Chapter 1. Contents

spux Documentation, Release 0.4.0

diction), and prior distribution of the parameters. Actual dataset files are located in the datasets directory at exam-
ples/randomwalk/datasets/.

The script to load the dataset into pandas DataFrames (a default container for dataset management in SPUX, see
https://pandas.pydata.org) is located in examples/randomwalk/dataset.py.

import pandas
dataset = pandas.read_csv ('datasets/dataset.dat', sep=",", index_col=0)

Error model is defined in examples/randomwalk/error.py as an object with a method distribution
(prediction, parameters) which returns a distribution of the model observations (dataset):

from scipy import stats
from spux.distributions.tensor import Tensor

define an error model
class Error (obiject):

return an error model (distribution) for the specified prediction and parameters
def distribution (self, prediction, parameters):

specify error distributions using stats.scipy for each observed variable_,
—independently

available options (univariate): https://docs.scipy.org/doc/scipy/reference/
—stats.html

distributions = {}

distributions ['position'] = stats.norm (prediction['position'], parameters[r'
—Sσs'])

construct a joint distribution for a vector of independent parameters by,
—tensorization
distribution = Tensor (distributions)

return distribution

error = Error ()

Prior distribution is defined in examples/randomwalk/prior.py:

specify prior distributions using stats.scipy for each parameter independently
available options (univariate): https://docs.scipy.org/doc/scipy/reference/stats.
—html

from scipy import stats

from spux.distributions.tensor import Tensor
from spux.utils import transforms

distributions = {}

distributions ['origin'] = stats.uniform (loc=50, scale=100)

distributions ['drift'] = stats.uniform (loc=-1, scale=2)

distributions [r'Sσ'] = stats.lognorm (x*transforms.logmeanstd (logm=10,
—~logs=1))

construct a joint distribution for a vector of independent parameters by,
—tensorization
prior = Tensor (distributions)

1.3. Tutorial 11

https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/datasets/
https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/datasets/
https://pandas.pydata.org
https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/dataset.py
https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/error.py
https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/prior.py

spux Documentation, Release 0.4.0

Within the context if this illustrative Randomwalk example, we also make use of the (optional) exact (“the
truth”) parameter values as well as the model predictions (without the observational noise) which are set at exam-
ples/randomwalk/exact.py:

exact parameters

parameters = {}

parameters ['origin'] = 100
parameters ['drift'] = 0.2
parameters [r'Sσ'] = 10

exact predictions
import os, pandas
filename = 'datasets/predictions.dat'
if os.path.exists (filename) :
predictions = pandas.read_csv (filename, sep=",", index_col=0)
else:
predictions = None

dictionary for exact parameters and predictions
exact = {'parameters' : parameters, 'predictions' : predictions}

The datasets (and the predictions) in the examples/randomwalk/datasets/ directory were generated using the above
exact model parameters from examples/randomwalk/exact.py by the synthesis script based on the built-in SPUX data
generation method: examples/randomwalk/script_synthesize.py

from spux.models.randomwalk import Randomwalk
from exact import exact
from error import error

model = Randomwalk ()

parameters = exact ['parameters']

steps = 1000

period = 20

times = range (period, period + steps, period)

sandbox = None

from spux.utils.seed import Seed
seed = Seed (2)

from spux.utils import synthesize
synthesize.generate (model, parameters, times, error, sandbox = sandbox, seed = seed)

We would also like to emphasize, that in the above scripts we generously use LaTeX syntax within labels for param-
eters, predictions, and observations. The benefit of such scrupulous naming will become evident from the generated
plots within this tutorial, where all axes labels are LaTeX-formatted mathematical symbols. Notice, that for a LaTeX
syntax to be supported in Python, one must prepend the string with the r letter (as in “raw”).

In order to give you a better overview of the datasets, the error model, the prior distribution, and (optional) exact
parameters values for a reference, consider running a preparation script examples/randomwalk/plot_config.py:

generate config
import script
del script

plotting class
from spux.plot.mpl import MatPlotLib
from exact import exact

(continues on next page)

12 Chapter 1. Contents

https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/exact.py
https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/exact.py
https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/datasets/
https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/exact.py
https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/script_synthesize.py
https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/plot_config.py

spux Documentation, Release 0.4.0

(continued from previous page)

plot = MatPlotLib (exact = exact)

plot dataset
plot.dataset ()

plot marginal prior distributions
plot.priors ()

plot marginal error model distributions
plot.errors ()

generate report
from spux.report import generate
generate.report (authors = r'Jonas {\v S}ukys")

The above script plots model observations (datasets), marginal prior distributions of model parameters, and marginal
error model distributions for specified model prediction and parameters and by default saves them in the £ig direc-
tory under multiple file formats (PDF, EPS, SVG, PNG), additionally including a caption file * . cap containing the
description of the figure contents:

Fig. 5: Observational dataset.

le—2

0.4 0.5 1.0

0.3 04 0.8
. [=
o £)

w5 T03 5 0.6
5 0.2 N 5
a ° w“

20.2 Bo4

0.1 0.1 0.2

0.0 0.0 0.0

7 8 9 10 11 12 13 14 -15 -10 -05 00 05 1.0 15 04 06 08 10 12 14 16
o drift origin le2

Fig. 6: Marginal distributions (prior).

exact model predictions
3.0 o dataset

Fig. 7: Observational dataset and the associated error model, evaluated using exact model predictions and exact model
parameters. The circles (or thick dots) indicate the dataset values, the thick solid line indicates the model predictions
used in the error model. The shaded green regions indicate the density of the error model distribution.

1.3. Tutorial 13

spux Documentation, Release 0.4.0

In addition to the plots, an auxiliary report directory is created (can be changed by setting reportdir in
sampler.setup (...)), including information regarding SPUX framework setup. Each report file in the
report directory is saved using three different formats:

e .dat - a(cloudpickle) binary dump of the respective Python object or dictionary,
e .txt - aformatted ASCII table to be easily read directly,

e .tex -aformatted LaTeX table to be included in a LaTeX report.

* . cap - acaption with the table title and description of the table contents.

At the end of the plot_config.py script all generated plots are compiled into a LaTeX report under directory
latex, where a PDF report is also generated if the pdflatex can be found in the system (which is not a SPUX
dependency). The PDF report for this example can be downloaded here. The report is continuously overwritten with
the newest plots and tables, and contains separate sections for the SPUX framework setup, and, as described in the
following sections, the results of the inference run and the computational performance amd runtime profiling reports.

As already hinted in the report above, the main script examples/randomwalk/script.py, uses the above auxiliary scripts
to configure SPUX:

=== Randomwalk model

construct Randomwalk model
from spux.models.randomwalk import Randomwalk
model = Randomwalk (stepsize = 1)

=== SPUX

LIKELIHOOD

for marginalization in stochastic models, construct a Particle Filter likelihood
from spux.likelihoods.pf import PF

likelihood = PF (particles = [4, 8], threshold=-5)

SAMPLER

construct EMCEE sampler

from spux.samplers.emcee import EMCEE
sampler = EMCEE (chains = 8)

ASSEMBLE ALL COMPONENTS

from error import error

from dataset import dataset

from prior import prior
likelihood.assign (model, error, dataset)
sampler.assign (likelihood, prior)

In this script, different additional components, such as model, likelihood, and sampler, are created. Afterwards, all
these components are merged together by assigning according to the logical dependencies. In the future, SPUX will
provide a spux.utils.assign module containing a assign function, which takes a list of components (in any
order) as an argument, tries to “automagically” perform all needed assignments (assuming all components are directly
derived from the respective SPUX component base classes) and returns the resulting top-level component (in this
example, the sampler):

from spux.utils.assign import assign
components = [model, error, dataset, likelihood, prior]
sampler = assign (sampler, components)

The corresponding SPUX configuration table from report /randomwalk_config. txt reports the selected class
for each SPUX component, together with the selected constructor arguments:

14 Chapter 1. Contents

https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/script.py

spux Documentation, Release 0.4.0

SPUX components configuration

—

Component | Class | Options o
__________ + —— + ———
Model | Randomwalk | stepsize=1 o
—

Likelihood | PF | particles=[4, 128], adaptive=True, accuracy=0.1, margin=0.
—05, threshold=-5, factor=2, log=1l, noresample=0

Sampler | EMCEE | chains=8, a=2.0, attempts=100, reset=10 o

In the SPUX configuration above, in the constructor arguments of the PF marginal likelihood estimator, the number
of particles, instead of being a fixed number, is set to a list indicating the minimum and maximum number of particles
to be used adaptively, starting with the minumum number of particles and then iteratively taking into account the
feedback from the empirical standard deviations of these estimates.

1.3.2.3 SPUX results
It is a good idea to keep this main script . py separate from the scripts that will actually run SPUX, in order to have
flexibility for the later customization of output location, sampling duration, and the targeted hardware resources.

To achieve this, we import the main configuration script and initiate the execution of the framework in a separate script
named (you will see later why such name) examples/randomwalk/script_serial.py:

=== SCRIPT
from script import sampler
=== SAMPLING

SANDBOX

use fast tmpfs

from spux.utils.sandbox import Sandbox

sandbox = Sandbox (path = None, target = '/dev/shm/spux-sandbox")

SEED
from spux.utils.seed import Seed
seed = Seed (8)

init executor
sampler.executor.init ()

setup sampler
sampler.setup (sandbox sandbox, verbosity = 1, seed = seed, lock = 50)
#sampler.setup (sandbox = sandbox, verbosity = 1, seed = seed, lock = 50, thin = 4)

init sampler (use prior for generating starting values)
sampler.init ()

generate samples from posterior distribution
sampler (12)

(continues on next page)

1.3. Tutorial 15

https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/script_serial.py

spux Documentation, Release 0.4.0

(continued from previous page)

exit executor
sampler.executor.exit ()

Within sampler.setup (...), various additional (optional) sampling options can be set, including:
* sandbox instance - target filesystem and directory for the SPUX sandbox,
* verbosity - [0 to infinity] limits the depth of verbosity in the hierarchy of SPUX components,
* seed instance - initial seed array for the pseudo random number generators,
* lock - batch index to lock sampler’s feedback to likelihood (e.g. adaptive PF) [default: None],
* thin period - to save only every t hin-th sample batch and information [default: None].

The adaptive number of particles in PF is meant to be used only during the initial burn-in period, after which, if the
number of particles is not completely stationary, the adaptation should be locked. The optional 1ock argument in
the sampler.setup (...) canbe used to stop the adaptation of the number of particles in PF and lock the most
recent value until the end of sampling.

The sandbox in this example script is configured to use the fast virtual node-local RAM-based Linux filesystem
called tmpfs. Note, that the exact path to the local tmpfs might differ depending on the Linux distribution. For
local testing, a user might prefer to temporarily switch to a conventional filesystem and set a different desired sandbox
path, leaving target=None. For production runs on high performance computing clusters, we recommend either
to use the default tmpfs, or, if the amount of system memory is a limiting factor, to set target to the scratch file
system of the cluster. Node-local (not shared) scratch filesystems are preferable, due to their better performance and
the lack of restrictions regarding any storage quotas. If target is a shared (hence not a node-local) filesystem (the worst
case scenario, for development only), you can also set path, where a corresponding symlink pointing to the specified
target will be created.

Regarding the auxiliary calls sampler.executor.init () and sampler.executor.exit (), you must
have them, and in this particular order, i.e. wrapping every other call of the SPUX framework (apart from the calls in
the main configurations script).

The main script then generates an output / directory (can be changed by setting outputdir in sampler.setup
(. ..)) with files containing posterior samples and supporting information; multiple files of each type will be gener-
ated for each checkpoint, with the default period being 10 minutes:

e samples—+.csv -a CSV file containing comma-separated posterior samples of parameters,

e samples—«.dat - abinary file (cloudpickle) containing posterior samples of parameters,

e infos-«.dat - abinary file (cloudpickle) containing a 1ist of supporting information,

* pickup-=.dat - abinary file (cloudpickle) containing a dictionary of sampler pickup information.

The supporting files infos—«.dat contain detailed information about each component in the hierarchical assign-
ment structure specified by the main configuration script. In the particular example, when loaded (see following
paragraphs) will contain a list of dictionaries for each draw of the posterior parameters from the sampler. For samplers
supporting multiple MCMC chains, each draw provides as many samples as there are chains, and hence the list in
the infos—«.dat will be shorter than the list of all posterior parameters by a factor of the number of chains. The
structure of each element in the list of loaded infos—« .dat can be inferred from the corresponding info generation
routines for each SPUX component (look for info = {...}).

The sampler pickup files pickup—+.dat contain all information needed to continue sampling past the respective
checkpoint (will be discussed in detail in the following sections).

In addition to the output directory, the auxiliary report directory is also updated, appending information regarding
computational environment (in report/randomwalk_environment.txt):

16 Chapter 1. Contents

spux Documentation, Release 0.4.0

Computational environment

Descriptor | Value

2019-05-23 00:58:01

0.3.0

dev_jonas
£98e24ae81841a98a39d7d9%e3b655ae6cdc97d4f

Timestamp

Version

GIT branch (plain)
GIT revision

required computational resources (in report/randomwalk_resources.txt):

Required computational resources

o
Component | Class | Task | Executor | manager | workers | resources |
—cumulative

—————————— B T e I i et e el R
B

Model | Randomwalk | - | - | 0 | 1 1 | o
. 1

Likelihood | PF | Randomwalk | Serial | 0 | 1] 1] o
“— l

Sampler | EMCEE | PF | Serial | 0 | 1 | 1 | o
— 1

sampler setup (in report/randomwalk_setup.txt):

Setup argument list

seed | thin | lock (batch) | lock (sample)

the cumulative number of model evaluations in each SPUX component (in report/
randomwalk_evaluations.txt):

Number of model evaluations

Component | Class | tasks | sizes | cumulative
—————————— + ————————— + ————— 4 ————— 4
Model | Randomwalk | 1 | 1 | 1
Likelihood | PF | 128 | 1 | 128
Sampler | EMCEE | 1K | 128 | 128K

and the structure of the information available in infos—«*.dat:

SPUX infos structure

—

s o

(continues on next page)

1.3. Tutorial 17

spux Documentation, Release 0.4.0

(continued from previous page)

Component | Class | Fields o
— —
— | Iterators for infos

,,,,,,,,,, O
e
B e +

Sampler | EMCEE | proposes, infos, parameters, posteriors, accepts, likelihoods,
—timing, priors, timings, index, feedbacks, feedback, resets o
. | 0 - 8

Likelihood | PF | particles, successful, variances, sources, timing, MAP, timings,

—redraw, weights, predictions_prior, estimates, variance, errors_prior, predictions,
—traffic, avg_deviation | -

If self.sandboxing == 1 is set for the model, a sandbox directory is created (or a custom name, if custom
sandbox is specified). This directory is populated with nested sandboxes for each sample, chain, replicate, likelihood,
and model. For sandboxes in the 1ocal mode (for non-shared filesystems), nested directories are replaced by a
single directory with a long name indicating the underlying hierarchy. Please also note, that sandboxes in local
mode are tentative, meaning that they are only created once self.sandbox () is executed for the first time. If
trace=True is additionally specified in the sampler.setup (...), this directory contains the stored sand-
boxes of all samplers, likelihoods and models, including all the generated results. However, these results would be
easily accessible only if sandboxes are placed in a shared filesystem and a non-local mode is used.

In the future, SPUX will explicitly save the sandbox with a complete trace of the model output (independently of the
value set to t race) for the approximated joint maximum a posteriori (MAP) model parameters and states under the
directory specified in sampler.setup (...) by MAPdir with the default being 'MAP '. In addition, there will be
an option to save only a (possibly thinned) collection of posterior sandboxes by specifying trace = 'posterior'
in sampler.setup (...).

An example analysis script to load and visualize results from the output/ directory is available at exam-
ples/randomwalk/plot_results.py:

=== load results

from spux.io import loader
samples, infos = loader.reconstruct ()

=== plot

burnin sample batch
burnin = 70

plotting class

from spux.plot.mpl import MatPlotLib

from exact import exact

plot = MatPlotLib (samples, infos, burnin = burnin, exact = exact)

plot unsuccessful posteriors
plot.unsuccessfuls ()

plot resets of stuck chains
plot.resets ()

compute and report approximated maximum a posterior (MAP) parameters estimate
plot.MAP ()

(continues on next page)

18 Chapter 1. Contents

https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/plot_results.py
https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/plot_results.py

spux Documentation, Release 0.4.0

(continued from previous page)

plot samples
plot.parameters ()

plot evolution of likelihoods
plot.likelihoods ()

plot evolution of likelihood accuracies
plot.accuracies ()

plot evolution of likelihood particles
plot.particles ()

plot redraw rates
plot.redraw ()

plot evolution of acceptances
plot.acceptances ()

plot timestamps

plot.timestamps ()

timestamps = ["evaluate", "routings", "wait"]

timestamps += ["init", "init sync", "run", "run sync"]

timestamps += ["errors", "errors sync", "resample", "resample sync"]

plot.timestamps (keys = timestamps, suffix = '-cherrypicked")

=== remove burnin

samples, infos = loader.tail (samples, infos, batch = burnin)

plot = MatPlotLib (samples, infos, burnin = burnin, tail = burnin, exact = exact)
plot .MAP ()

plot autocorrelations
plot.autocorrelations ()

compute and report effective sample size (ESS)
plot.ESS ()

plot marginal posterior distributions
plot.posteriors ()

plot pairwise joint posterior distributions
plot.posteriors2d ()

plot pairwise joint posterior distribution for selected parameter pairs
plot.posterior2d ('origin', 'drift")

plot posterior model predictions including datasets
plot.predictions ()

plot quantile—quantile comparison of the error and residual distributions
plot.QQ ()

show metrics
plot.metrics ()

generate report

(continues on next page)

1.3. Tutorial 19

spux Documentation, Release 0.4.0

(continued from previous page)

from spux.report import generate
generate.report (authors = r'Jonas {\v S}ukys'")

This script uses some built-in plotting routines available in spux/plot/mpl.py module. However, the user is free to
use only the loading parts and choose how to visualize the results using other established data visualization libraries,
including the built-in visualization module pandas.plotting in pandas for the visualization of the pandas.
DataFrame objects. Also check out NumFOCUS.

Note, that for runtime saving purposes, actual linked example scripts in repository usually could be setup for smaller
computational resources (i.e. fewer particles, chains, samples, etc.), and hence the following example plots for SPUX
results could differ from your versions (please check the corresponding entries in the provided configuration and setup
tables above).

The above analysis script generates multiple plots of the results, but firstly it is most useful to look at the
unsuccessfuls and resets plots.

08
sample batch

Fig. 8: Diagnostics of the posterior sampler, indicating the successes and failures of the likelihood estmation proce-
dures. Legend: green - successfully passed, gray - estimation skipped due to (numerically) zero prior, red - estimation
failure due to failed model simulatios and/or failed PF filtering.

Note, that skipped likelihoods are not scheduled in the executor and might result in a temporary (for that particular
parameter proposal) parallelization imbalances due to the lack of tasks to process.

m chain resets (cumulative: 0.0%)

counts
£y

00 02 04 06 08 10 12
sample batch 1e2

Fig. 9: The report for the number of resets (re-estimation of the marginal likelihood) for stuck Markov chains, including
the cumulative percentage of resets relative to the total number of samples.

From the diagnostic plot above, we determine that the inference was (tentatively) successful: not many failed (NaN)
or skipped (zero prior) likelihood evaluations, and a negligible amount of total chain resets (likelihood re-estimations).

The next most important plots are the parameters plot, reporting the sampling progress of all sampler chains,

.
o
e
-
00 S Yoy

b A e e AL T . 08| I

7
00 02 04 o5 o8 10 12 0o 02 04 06 o8 10 12 00 02 04 o6 08 10 12
sample batch 1e2 sample batch ie2 sample batch 1e2

Fig. 10: Markov chain parameters samples. The solid lines indicate the median and the semi-transparent spreads
indicate the 5% - 95% percentiles accross multiple concurrent chains of the sampler. An auxiliary semi-transparent line
indicates an example of such chain. The thick semi-transparent gray lines indicate the interval containing centererd
99% mass of the respective prior distribution. The brown dotted line indicates the estimated maximum a postriori
(MAP) parameters values. The red dashed line represents the exact parameter values.

20 Chapter 1. Contents

https://gitlab.com/siam-sc/spux/tree/test/spux/plot/mpl.py
https://numfocus.org/sponsored-projects?_sft_project_category=python-interface+visualization

spux Documentation, Release 0.4.0

and the progress of the corresponding likelihood, accuracies, particles, redraw, and acceptances plots providing diag-
nostic information of the algorithmic technicalilies within the PF likelihood estimation and Markov chain sampling:

00 02 04 06 08 10 12
sample batch 1le2

Fig. 11: Log-likelihood and (scaled [TODO: estimate evidence and remove scaling]) log-posterior estimates for the
sampled model posterior parameters. The solid lines indicate the median and the semi-transparent spreads indicate the
10% - 90% percentiles accross multiple concurrent chains of the sampler. For log-likelihood, the estimates from the

rejected proposed parameters are also taken into account.The brown “0” symbol indicates the posterior estimate at the
approximate MAP parameters.

00 02 04 06 08 10 12
sample batch 1le2

Fig. 12: Maximums of the average (over dataset snapshots) marginal observational log-errors accross multiple con-
current chains of the sampler. The dashed green line indicates the threshold set in the adaptive PF likelihood.

S areranss

00 02 04 06 08 10 12
sample batch 1e2

®0.0

Fig. 13: Average (over dataset snapshots) standard deviations for the estimated marginal observational log-error using
the PF. The semi-transparent spread indicates the range (minimum and maximumum) accross multiple concurrent
chains of the sampler and the solid line indicates the value of the chain with the largest estimated log-likelihood. The
solid thick gray line above the same line for a zero value reference indicates the specified accuracy and the dashed
thick gray lines indicate the specified margins - all specified within the adaptive PF likelihood.

We estimate the burnin period to last for approximately 70 batches of EMCEE samples from multiple chains. We use
this information to generate all subsequent plots with the initial bias already removed by setting burnin=70 in the
reconstruct method for loading results in the plot_results.py script above. We note, that 1ock sample
batch reported in the setup table above must not exceed the selected burnin to ensure that the number of particles
in PF likelihood is fixed throught the posterior sampling (and hence avoid any potential bias due to the adaptivity
process). The resulting inference plots provide a detailed insight into posterior parameters and model predictions
distributions, as well as the performance of the overall Bayesian inference.

In addition to the plots in the f£ig directory, the auxiliary report directory is also updated, appending information
regarding the approximate maximum a posterior parameters values (in report /randomwalk_MAP.txt):

Maximum A Posteriori (MAP) estimate parameters

(continues on next page)

1.3. Tutorial 21

spux Documentation, Release 0.4.0

feedback
125] particles

0.00{

°
g

00 02 04 06 08 10 12
sample batch le2

Fig. 14: The adaptavity of the number of particles in the PF likelihood. The brighter line indicates the feedback
(recommendation) of the adaptation algorithm, and the darker line indicates the actual number of used particles. The

semi-transparent thick gray lines indicate the limits for minimum and the maximum number of allowed particles in
the PF likelihood.

APV WA AL VAN

00 02 04 06 08 10 12
sample batch 1e2

Fig. 15: Particle redraw rates (the fraction of surviving particles) in the PF likelihood estimator. The solid line indicates
the mean, the semi-transparent spreads indicate the 5% - 95% percentiles, and the dotted lines indicate the range
(minimum and maximum) accross multiple concurrent chains of the sampler.

0.0
00 02 04 06 08 10 12
sample batch 1e2

Fig. 16: Acceptance rate (accross multiple concurrent chains of the sampler) for the proposed parameters samples.

Fig. 17: Marginal posterior (orange) and prior (blue) distributions of model parameters. The brown dotted line indi-
cates the estimated maximum a postriori (MAP) parameters values. The red dashed line represents the exact parameter
values.

22 Chapter 1. Contents

spux Documentation, Release 0.4.0

0125 0.150 0.175 0200 0225 0.250

drift

origin 1w

9 0 n 12 . 6 8 100 120 140

Fig. 18: Joint pairwise marginal posterior distribution of all model parameters, including the corresponding Markov
chains from the sampler. Legend: thick semi-transparent gray lines - intervals containing centererd 99% mass of the

[P

respective prior distribution, blue “+” - initial parameters, brown “0” - approximate MAP parameters, red “x” - the
exact parameters, thin semi-transparent gray lines and dots - concurrent chains, orange hexagons - histogram of the
joint pairwise marginal posterior parameters samples.

approximate MAP.
0.24 0.24 exact

0.22 AN 0.221
020 NSO 020
& VR T €018,
So1s] K So1s
0.161 + | o01ef

0141 initial 0141
approximate MAP

0129 exact

0.12{

0.75 0.80 0.85 0.90 0.95 100 1.05 1.10 075 0.80 0.85 0.90 095 1.00 105 1.10
origin 1e2 origin 1e2

Fig. 19: Joint pairwise marginal posterior distribution of origin and drift, including the corresponding Markov chains
from the sampler. Legend: thin semi-transparent gray lines and dots - concurrent chains, orange hexagons - histogram

of the joint pairwise marginal posterior parameters samples, blue “+” - initial parameters, brown “0” - approximate
MAP parameters, red “x” - the exact parameters.

1e2

30 approximate MAP
exact model predictions

| 2
s fir”
g20 O -
g
sl s®
o~

02 0.4 0.6 0.8

Fig. 20: Posterior distribution of model predictions for the observational dataset. The shaded orange regions indicate
the log-density of the posterior model predictions distribution at the respective time points, the brown line indicates
the approximate MAP model prediction., the red line represents the exact model prediction values.

QQ plot for position

posterior residual quantiles
°

-20 0 20
theoretical error quantiles

Fig. 21: Quantile-quantile distribution comparison between the prediction residuals and the specified error model.

1.3. Tutorial 23

spux Documentation, Release 0.4.0

(continued from previous page)

9.24e+00 | 1.95e-01 | 9.78e+01

and various metrics for inference efficiency (in report/randomwalk_metrics.txt):

Metrics for the inference efficiency.

—

Metric | Value

Maximum A Posteriori (MAP) estimate | batch:52, chain:2, sample:418, log-
—posterior:-2.01le+02

Multivariate Effective Sample Size (mESS) | not implemented

—

Multivariate thin period | not implemented

=

Univariate Effective Sample Size (ESS) | 1 - 125 (across chains), with average 17_
—and sum 140

Univariate thin period | 1 - 71 (across chains), with mean 44

[

—

As withthe plot_config.py script, at the end of the plot_results. py script all generated plots are compiled
into a LaTeX report under directory latex.

1.3.2.4 SPUX performance

The table of inference runtimes is available in report /randomwalk_runtimes.txt:

Runtimes (excl. checkpointer)

| 2 hours 43 minutes 2 seconds
Average runtime per sample | 0 hours 0 minutes 10 seconds
Equivalent serial runtime | 2

Total runtime (excl. checkpointer)

hours 43 minutes 2 seconds

Even without explicitly specifying informative = 1 in sampler.setup (...), the informative output is
enable for the first and the last sample batches. This allows us to generate a simplified and a standard t imestamps
plots, providing an inisight into the runtimes profiles of the very last sample.

evaluate
— it
— run
— errors
= resample

worker

0 2 8 10

4 6
time [s]

Fig. 22: Timestamps of key methods within a single estimation of the PF likelihood across all parallel workers.

24 Chapter 1. Contents

spux Documentation, Release 0.4.0

e
— i

worker

0

2 a 6 1

0 8)

time [s]

Fig. 23: Timestamps of key methods within a single estimation of the PF likelihood across all parallel workers.

1.3.2.5 Continue sampling

It is possible to continue the sampling process where it finished without any additional re-evaluation of the likelihoods,
since all the needed information is already available. The easiest way to continue sampling is to increase the number
of samples as needed and then execute the sampling script with the additional command line option ——continue,
for example:

$ python script_serial.py —-—-continue

This automatically loads the most recent pickup file (see above).
An alternative and a more flexible way to manually customize the sampler.setup (...) method by providing
* sample batch index - from which to continue (usually incremented last sampled batch index),
* feedback - from the previous sample batch index (only for PF likelihood),
and the sampler.init (...) method by providing (for the sampele batch index specified above)
* initial parameters - respective loaded parameter samples for each sampler chain,
* posteriors - the posteriors of the above parameters.

An example of such advanced manual continuation script is available at exam-
ples/randomwalk/script_serial_continue.py.

1.3.2.6 Informative output

By default, the computation performance measurements and the additional infos from each SPUX component are
incorporated into infos—+.dat for the first and the last sample batches. Alternatively, you can choose to enable
or disable such informative output by setting informative = 1orinformative = O flagin the sampler.
setup (...). Note, however, that informative = 1 results in an overhead for your inference, and is only
advised for the non-production runs during the development stages. You can then use the sample script exam-
ples/randomwalk/plot_performance.py to generate plots for timings and scaling for each sample batch, in addition
to the timings plots generated by plot_results above.

1.3.2.7 Profiling

If you would like to have more detailed information about the execution process, you can enable the profiling by setting
profile=1linsampler.sample (...). The profiling information after the execution of the framework will be
saved in output/profile.pstats. You can then use the sample script examples/randomwalk/plot_profiler.py
to generate a report and a callgraph plot, which will be saved under the £ig/ directory.

1.3.3 Randomwalk (parallel)

With minimal effort, the above example configuration could be parallelized either on a local machine or on high
performance computing clusters.

1.3. Tutorial 25

https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/script_serial_continue.py
https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/script_serial_continue.py
https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/plot_performance.py
https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/plot_performance.py
https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/plot_profiler.py

spux Documentation, Release 0.4.0

Note, that NO MODIFICATIONS are needed for this particular Randomwalk model class. For a more detailed
discussion for other user-specific models written not in pure Python, refer to Customization.

1.3.3.1 SPUX executors

To enable parallel execution, each SPUX component in the main configuration script script . py can be optionally
assigned a parallel executor, specifying the number of parallel workers (for that particular component). In this example,
we use a separate script examples/randomwalk/script_executors.py:

=== SCRIPT with SPUX components
from script import likelihood, sampler
=== EXECUTORS
import required executor classes
from spux.executors.mpidpy.pool import MpidpyPool
from spux.executors.mpidpy.ensemble import MpidpyEnsemble
create executors with the specified number of parallel workers and attach them
likelihood.attach (MpidpyEnsemble (workers=2))

sampler.attach (MpidpyPool (workers=2))

display resources table
sampler.executor.table ()

The additional lines at the end of the script regarding the talb1le estimate the needed computational resources, which
are determined by the number of workers requested in each executor. Note, that a separate core is used for the manager
process of each executor. The table with estimated computational resources can be printed to the terminal simply by
executing this script (parallel inference is NOT launched at this point):

$ python script_executors.py

An example output of such table (for this particular configuration) is provided below, where the cumulative number of
31 cores are needed (bottom left cell, scroll horizontally to see everything).

Required computational resources

—

Component | Class | Task | Executor | manager | workers | resources |,
—cumulative

7777777777 B et e al e S i SR
Model | Randomwalk | - [— | 0 | 1] 1] o
— 1

Likelihood | PF | Randomwalk | Serial | 0 | 1] 1] o
. 1

Sampler | EMCEE | PF | Serial | 0 | 1] 1] o
— 1

1.3.3.2 Launching parallel SPUX

To launch a parallel inference using SPUX with the attached parallel executors as above, we use a separate script
for parallel runs which additionally initializes a parallel connector and passes it to the sampler.executor.init

26 Chapter 1. Contents

https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/script_executors.py

spux Documentation, Release 0.4.0

(...),asgiven in examples/randomwalk/script_parallel.py:

=== CONNECTOR INITIALIZATION

from spux.executors.mpidpy.connectors import utils
connector = utils.select ('auto')

=== SAMPLER with attached executors

from script_executors import sampler

=== SAMPLING

SANDBOX

use fast tmpfs

from spux.utils.sandbox import Sandbox

sandbox = Sandbox (path = None, target = '/dev/shm/spux-sandbox')
SEED

from spux.utils.seed import Seed

seed = Seed (8)

init executor
sampler.executor.init (connector)

setup sampler
sampler.setup (sandbox = sandbox, verbosity = 2, seed = seed, lock = 50, thin = 10)

init sampler (use prior for generating starting values)
sampler.init ()

generate samples from posterior distribution
sampler (12)

exit executor
sampler.executor.exit ()

Note the initialization of the connector as the very first item in the script. We emphasize, that such ordering of the
connector and remaining SPUX components is mandatory to ensure efficient startup.

Assuming you have MPI installed (see /nstallation), the above script can be executed with:

$ python script_parallel.py

Note, that this is the shortest way to run it, but not the best. In particular, if the simulation crashes, the backtrace of
the crash source will be complicated and the parallel processes cleanup will not be as desired. Hence, please consider
using a more extensive command for production runs:

$ mpiexec -n 1 python -m mpidpy script_parallel.py

Note, that any needed additionally required MPI processes will be spawned automatically according to the resource
table above, hence for this configuration always use —n 1, independently of the workers in executors.

When script_parallel.py is executed, the computational resources table described in the preceding section is
printed to the terminal and also written to report/randomwalk_resources.txt.

1.3. Tutorial 27

https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/script_parallel.py

spux Documentation, Release 0.4.0

1.3.3.3 Remark on MPI libraries
Note, that different MPI libraries provide different implementations, which have different configuration capabilities
and might not completely follow the MPI standard.
Here we try to provide a list of useful advices to address any issues that you could encounter.
For OpenMP I (launched with mpirun or mpiexec):
» Specify ——mca mpi_warn_on_fork O toavoid annoying warnings (only for Spawn connector).

e Specify —-mca pmix_server_max_wait 3600 and --mca pmix_base_exchange_timeout
3600 to avoid connection failures (not relevant for Legacy connector).

* For local testing, specify ——oversubscribe to use more MPI ranks than you have cores.
For CrayMPTI (launched with srun):

e Specify ——hint=nomultithread and ——cpu-bind=rank.

1.3.3.4 Remark on executors
Note, that multiple serial (Serial) and parallel (Pool/Ensemble) executors can be freely selected (that is, serial
or parallel) for every SPUX component (Model, Likelihood, Sampler, etc.).

This freedom to use individual parallel executors of arbitrary size for every SPUX component provides a lot of flexibil-
ity, but also leaves ample of space for computationally inefficient parallel configurations. Hence, for large production
runs, we strongly advice to take the following guidelines into consideration (decreasing in priority):

* Allocate most workers to the executors of the outer-most SPUX component(s) (e.g. sampler).
* Avoid parallel executors with few workers (less than 4) - replace them with Serial executors.

SPUX will report the percentage of the number of manager cores w.r.t. the total number of all (manager and worker)
cores. If the above guidelines are not properly implemented, this fraction could be larger than 20%, in which case
SPUX will display an explicit inefficiency warning. Such warning will be skipped for jobs that requested not more
than 8 cores in total, to filter out local debug and development runs, where parallelization efficiency is not of the
highest importance.

1.3.3.5 Remark on connectors

The default way of initializing a connector is given by

from spux.executors.mpidpy.connectors import utils
connector = utils.select ('auto')

checks how many MPI ranks are available in MPI_COMM_WORLD intra-communicator and automatically selects
Spawn connector if only one rank is found (and all other workers need to be spawned.)

Since some HPC systems do not allow dynamically spawning new MPI processes, to run SPUX in parallel on 21 cores
with MPI, simply execute:

$ mpiexec -n 21 python -m mpidpy script_parallel.py

Note, that -n 21 MUST match the total amount of required resources (bottom right cell) reported by running exam-
ples/randomwalk/script_executors.py: and stored in report/randomwalk_resources.txt.

In this case, more than one MPI rank is available in MPI__COMM_WORLD intra-communicator, and hence the Split
connector is automatically selected.

28 Chapter 1. Contents

https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/script_executors.py
https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/script_executors.py

spux Documentation, Release 0.4.0

Some HPC systems not only disallow dynamically spawning new MPI processes, but also do not support modern
dynamical MPI process management features such as inter-communicator creation between two existing MPI intra-
communicators using MPI_Comm_accept () and MPI_Comm_connect () methods. In this case, you will
simply need to use a legacy Legacy connector instead of the Split connector. Any such specific connector can be
also specified manually either by replacing auto with spawn/split/legacy in the connector initialization, or by
specifying such connector name as a command line argument to the script_parallel.py, for example:

$ mpiexec -n 21 python -m mpidpy script_parallel.py --connector legacy

1.3.3.6 Remark on replicates

For parallel runs with replicate datasets (e.g. randomwalk-replicates example), the Replicates likelihood
performs guided load balancing by evaluating the lengths of the associated datasets together and sorting likelihood
evaluations, taking into account adaptive number of particles in the PF likelihood as well, if used. Higher priorities
are assigned to the likelihoods with longer datasets and large number of particles (if applicable), and lower priorities
are assigned to the likelihoods with shorter datasets and smaller number of particles (if applicable). If needed, one
can disable such behavior by setting sort=0 in the constructor Replicates (...). We warn, however, that
depending on the executor configuration, disabling sorting (and hence reverting to non-guided load balancing) might
lead to inefficient parallelization.

1.3.3.7 Performance progress

The performance plots of the last sample from a parallel simulation are also generated with plot_results.py.
Additional highly technical parallel performance plots can be generated by executing plot_performance.py,
provided that informative = 1 wasusedin sampler.setup (...),and provide a summarized insight into
the computation and communication balance within the parallel PF resampling stages, over the evolution of the entire
sampling process.

As with the plot_config.py and plot_results.py scripts, at the end of the plot_performance.py
script all generated plots are compiled into a LaTeX report under directory latex.

1.3.3.8 Parallel scaling

The template for post-processing results from multiple independent SPUX runs using a different cumulative amount
of processor cores and generating the strong scaling plot is available in examples/randomwalk/plot_scaling.py.

1.3.3.9 Profiling (parallel)

Currently no special scripts for parallel profiling are packaged with SPUX.

1.4 Customization

This section discusses the peculiarities of coupling your model with the framework (the most common use case of
SPUX), including some guidelines on writing a custom posterior sampler or a custom likelihood module and using it
within SPUX. You are welcome to browse through the results of the models already coupled to spux in the Gallery.

1.4. Customization 29

https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/plot_scaling.py

spux Documentation, Release 0.4.0

1.4.1 Adding a model

In the most common use scenario of SPUX, you will want to implement your own Python model class, which will
wrap your existing application to the SPUX framework. To avoid any confusion between these two concepts, we try to
refer to your existing application (in any pogramming language) as the “application”, and to the Python class coupling
your application to the SPUX framework as the “model”. While reading these instructions, make sure to take a look
at the base Model class at spux/models/model.py. There, extensive comments describe the requirements and many
additional helper variables available within all model methods from the base model class.

You will need to create a new file with your model class derived from this base Mode1 class. To have an idea what is
required, take a look at the code for the Randomwalk model used in Tuzorial.

1.4.1.1 Model test script

To test any modifications or new additions to the model class, we recommend to use a dataset synthesis script for
debugging purposes. We recommend to adapt a respective script_synthesize.py script from any of these
examples:

* examples/strightwalk/script_synthesize.py for a deterministic model,
» examples/randomwalk/script_synthesize.py for a stochastic model,
¢ examples/randomwalk-replicates/script_synthesize.py as above, but with replicate datasets.

As explained in Turorial, these scripts only need the exact parameters to be specified. No need for exact model predic-
tions - these will be generated. At this point, we also suggest to start with no error model, that is error = None.
The error model will become relevant only once the model is fully implemented, and you will switch from dataset
synthesis using script_synthesize.py to running complete Bayesian inference using SPUX as described in
Tutorial. Note, that even if the synthetically generated dataset(s) (that is, by specifying the error model) are usually
scientifically irrelevant (since you want to perform the Bayesian inference using the real dataset(s)), the inference
using such dataset(s) still provides an invaluable resource for making sure the correctness of your implementation.

If your model is (or is intended to become) stochastic and you will be using the PF likelihood, we do recommend to
start with resampling disabled by setting noresample=1 in its constructor. This will skip the resampling procedures
that require properly functioning save/load/state methods in your model, allowing you to fully develop your
model’s init and run methods first. Make sure to remove noresample=1 once you move to the implementation
and testing of the save/load/state methods.

An alternative option is to start with a deterministic version of your model first (provided such version is possible),
and to use the Direct likelihood, which does not perform any resampling and does not use save/load/state
methods of your model.

1.4.1.2 Model execution control

In your custom model class (inherited from the base Mode1l class), you will need to modify two mandatory methods:
e init (self, inputset, parameters) -initialize model for the specified inputset and parameters
e run (self, time) -run model until the specified time and return the prediction
In the method declarations above, the arguments have the following meanings:
* inputset - an optional arbitrary object specified in the 1ikelihood (default is None)
* parameters - apandas.Dataframe object with model parameters (as in the prior of the sampler)

e time - an entry from the index of the pandas.Dataframe object dataset specified in the
likelihood

30 Chapter 1. Contents

https://gitlab.com/siam-sc/spux/tree/test/spux/models/model.py
https://gitlab.com/siam-sc/spux/tree/test/examples/straightwalk/script_synthesize.py
https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/script_synthesize.py
https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk-replicates/script_synthesize.py

spux Documentation, Release 0.4.0

Within these two main methods, you have two alternative options to execute your actual application:
* Basic (easy but less efficient) - run application execution command with arguments in a shell,
* Advanced (an efficient SPUX’onic way) - call application methods from Python using “drivers”.

The “basic” method is very similar to the way you are most probably already executing your application, and hence is
recommended as the starting option for the first coupling of your application to the SPUX framework. In particular,
the application execution command (name it “mymodel”) with some additional prescribed command line arguments
(name them “argl” and “arg2”), is often called by

$ mymodel argl arg?2

To achieve exactly the same behavior from within any method of your SPUX model class (init (...),run (..
.), etc.), including the isolation of the application to the required sandbox directory if the sandboxing is enabled (see
below), you can simply use the built-in convenience method shell:

code = self.shell (r'mymodel argl arg2')

Note the r in front of the string to make sure all speciad characters are specified properly. Internally it uses Python’s
subprocess module, and returns the exit code of your application.

The “advanced” method allows to control the execution stages of your application directly from within the Python

model methods, avoiding the unnecessary overhead of application initialization and finalization inbetween consecutive

calls of the model’s run (...) method. The computational efficiency gains are particularly large for a long time

series datasets, where run (.. .) needs to be called multiple times, and for models with small stochastic volatility

(including deterministic models), where model states change infrequently (or never) inbetween consecutive run (.
.) calls.

Taking into account the additional requirements for respective model drivers (see Installation), you can also start
directly from the advanced model execution control template corresponding to the required programming language:

 Python: spux/models/straightwalk.py spux/models/randomwalk.py, examples/hydro/hydro.py,
* Fortran: examples/superflex/superflex.py,

* Java: spux/models/ibm.py.

1.4.1.3 Model scope variables

Any model instance has the following internal variables (some different for each instance) available in all methods:
* self.sandbox () -apathto an isolated sandbox directory (if self.sandboxing == 1),
* self.verbosity - ainteger indicating verbosity level for print () intensity management,
e self.seed () - alistcontaining all hierarchical seeds,
e self.seed.cumulative () -a(large) integer seed obtained by combining all hierarchical seeds,

¢ self.rng-anumpy.random.RandomState instance for random_state in scipy.stats distribu-
tions.

The detailed usage of these methods is described in the following sections.

1.4.1.4 Model sandboxing

Sandboxing is enabled by default and a default sandbox is created under sandbox. From within any method of the
model, the sandbox path can be retrieved by executing self.sandbox (). If certain common files need to be
present in every model sandbox, consider creating and populating a template sandbox directory, for instance named

1.4. Customization 31

https://gitlab.com/siam-sc/spux/tree/test/spux/models/straightwalk.py
https://gitlab.com/siam-sc/spux/tree/test/spux/models/randomwalk.py
https://gitlab.com/siam-sc/spux/tree/test/examples/hydro/hydro.py
https://gitlab.com/siam-sc/spux/tree/test/examples/superflex/superflex.py
https://gitlab.com/siam-sc/spux/tree/test/spux/models/ibm.py

spux Documentation, Release 0.4.0

input, and specifying a custom sandbox by sandbox = Sandbox (template = 'input') insampler.
setup (...).The contents of the template sandbox are always automatically copied (using efficient local caching)
to the actual isolated sandbox. and are accessible under sandbox path retrieved using the same instruction as before,
ie. self.sandbox (). During the model development and debugging, we do recommend to use trace = 1in
sampler.setup (...) tobe able toinspect each sandbox.

1.4.1.5 Model stochasticity

Note, that self.seed (), self.seed.cumulative () and self.rng change for EACH call of self.
run (). Make sure that your underlying model is properly configured to implement such frequent updates in the
seeding of the random number generator.

1.4.1.6 Initial model state

For some models that do not have a clear starting state, there are basically only two alternative choices regarding the
implementation of the init (...) method:

* perform computationally expensive “warmup” simulations to obtain (hopefully) valid model states,
* given a prior initial states distribution, infer the posterior initial states distribution.

For the latter choice, the hydrological example is in particularly interesting, since the initial model state is stochastic
(to be inferred using Particle Filter). For an example usage of such setup, please refer to the hydrological exam-
ple at: examples/hydro. In short, a probabilistic prior distribution is provided for the initial model state in exam-
ples/hydro/initial.py, which is then filtered by the PF likelihood to infer the posterior distribution of initial model
states that are consistent to a respective dataset.

1.4.1.7 Auxiliary predictions

The run (self, time) method of the model returns annotated model predictions. For the sake of simplicity
and to keep the amount of data manageable, only a list or an array of scalars is allowed to be included for such
annotation. The full state of some complex models, for instance, in computational fluid dynamics, consists of large
multi-dimensional arrays instead of just a couple of scalar values. The suggested strategy is to cherry-pick a handful
of the most important scalar values (at the most important array locations) and use them for annotation. This will
be sufficient for some simple plots of posterior predictions. However, the error model might still require the full
multi-dimensional array for the evaluation of the observation likelihood given some multi-dimensional dataset. To
accommodate this, assign any extracted large arbitrary Python objects to the auxiliary argument in the annotate
(...) call. By doing so, the predictions in the error model’s distribution (...) method will instead
be a dictionary containing predictions ['scalars'] asapandas.DataFrame formed from the provided
scalars, and predictions ['auxiliary'] as a arbitrary Python object assigned by the model. This auxiliary
object will be accessible only in the error model, and will be discarded immidiately afterwards.

1.4.1.8 Inputsets for models

If Replicates likelihood is used to incorporate different observations provided by multiple (replicate) datasets,
some models might also require different inputset configurations for each such dataset. For instance, each dataset
might require a specific starting time and value of the model. These inputset configurations are not allowed to be set
in the model constructor, since this would result in identical inputs across all replicates (which is fine only if there
are no different dataset replicates). Instead, the input sets argument provides complementary information for each
replicate by passing a respective inputset to the model’s init (...) method (see description above). For an
example usage of this setup, please refer to the hydrological example at: examples/hydro.

32 Chapter 1. Contents

https://gitlab.com/siam-sc/spux/tree/test/examples/hydro
https://gitlab.com/siam-sc/spux/tree/test/examples/hydro/initial.py
https://gitlab.com/siam-sc/spux/tree/test/examples/hydro/initial.py
https://gitlab.com/siam-sc/spux/tree/test/examples/hydro

spux Documentation, Release 0.4.0

1.4.1.9 Model state serialization

The PF likelihood estimator for stochastic models requires your model to have a capability of being cloned, which in
SPUX is based on the concept of the model “state” serialization to a binary stream (array). If you model is written
in pure Python or R and you are NOT using the sandbox for any files relevant to your model state, then the required
model state serialization functionality from the model’s base class is already sufficient.

However, if you save some part of your model state in the sandbox with snapshot-dependent filenames, or if your
model is not written in pure Python or R, you will need to specify custom methods for model serialization into its
binary representation (state) and a corresponding de-serialization:

* save (self) -save andreturn a bytearray representing the current state of the model,
e load (self, state) -load model using the bytearray representing its required state.

The corresponding helper methods save (obj) and load (state) are available in the spux.utils.
serialize module, and are suggested to be used to serialize and de-serialize any arbitrary Python object.

If any files relevant to the model state are saved in the sandbox, the full state of the save method must also include
the sandbox state, which is obtained by calling the self.sandbox.save (...) method of the sandbox. This
functionality is already implemented in the base Mode1 class (de-)serialization methods, as long as the list of relevant
files (otherwise all sandbox files will be included) is specified in the statefiles argument of the Sandbox con-
structor. Note, that the files specified in the statefiles list do not necessarily need to exist in the initial template
sandbox directory, since they might be dynamically generated during the init (...) and run (...) methods
of the model.

If the filenames of the sandbox state files depend on the snapshot, then they cannot be statically specified in the sandbox
constructor, and a custom model (de-)serialization methods save and 1oad need to be implemented. In such case, the
list of relevant state files (otherwise all sandbox files will be included) needs to be specified in the £i1es argument of
the self.sandbox.save (...) method. The obtained sandbox state can then be combined with any additional
required model instance fields (for instance, sel1f .t ime) in a dictionary and then passed to the serializer:

state = {}

files = ['relevant_file_1', 'relevant_file_2"']
state ['sandbox'] = self.sandbox.save (files)
state ['model'] = self.time

state = serialize.save (state)

The corresponding model 1oad method must then extract the relevant model and sandbox states from the full serial-
ized model state and write back the correponding files into the new sandbox:

state = serialize.load (state)
self.sandbox.load (state ['sandbox'])
self.time = state ['model']

If your model is not written in Python or R, then for some of the other most common programming languages, SPUX
contains built-in driver modules in spux/drivers, which can be used to implement the above model state saving and
loading routines quickly and efficiently. We recommend to look at the provided example codes in examples/.

1.4.1.10 Serialization test script

To test your custom implementation of the model state (de-)serialization using save () and load () rou-
tines, we recommend to use a clone testing script for debugging purposes. We recommend to adapt the example
script_clone.py script from examples/randomwalk/script_clone.py. The script runs the specified model up to
the specified clone time and makes a clone of the original model by saving its state. Then, a second model is created
by loading the saved state of the original model and both models are run using the same RNG and seed up to the

1.4. Customization 33

https://gitlab.com/siam-sc/spux/tree/test/spux/drivers/
https://gitlab.com/siam-sc/spux/tree/test/examples/
https://gitlab.com/siam-sc/spux/tree/test/examples/randomwalk/script_clone.py

spux Documentation, Release 0.4.0

specified compare time. If the save () and load () methods work as expected, the predictions of both models
must be identical.

1.4.2 SPUX executors

Any set of independent tasks within any of the SPUX components can be executed in parallel using built-in SPUX
executors. As described in the tutorial, the default exectutor is a Serial executor.

Currently, the parallel executors of each type (“pool” and “ensemble”) are implemented in SPUX using MPI. Different
types of executors support different functionality and are usually meant to be used in different SPUX components:

* “pool” - dynamically executes a set of independent tasks; changes in task “states” are discarded,
» “ensemble” - statically executes a set of independent tasks in an ensemble (keeping task “states™).

The “pool” type executor can be used by calling its map (...) method and passing one of the three sets of argu-
ments:

* a callable object (for instance, a function) and a list of arguments for the evaluations,
* alist of callable objects (with an optional list of common fixed arguments),
* alist of callable objects and a corresponding list of arguments for the evaluations.

The “ensemble” type executor does not accept a list of tasks directly, but requires and instance of an Ensemble class.
Currently the only implemented ensemble class is for an ensemble of SPUX models (to be used in the PF likelihood),
available at spux/likelihoods/ensemble.py.

Given an ensemble instance as above, the “ensemble” type executor can be used by issuing a sequence of executor
method calls for control of the ensemble initialization, iterative execution of multiple stages for all tasks, and (optional)
resampling:

e connect (ensemble, indices) - initialize ensemble with tasks enumerated by the specified indices,
* call (method, args) -call aspecified (as a string) method of each task and return the results,

* resample (indices) - resample tasks according to the specified indices (clone and/or delete),

e disconnect () - finalize ensemble and discard any changes in the task “states”.

Inbetween the connect and disconnect, the ensemble executor methods call and resample can be called
multiple times, each time advancing all tasks to the next execution stage and performing any needed resampling of
tasks. During the resampling, tasks are allowed to be cloned (duplicate indices) and deleted (missing indices). In the
resampling call, load re-balancing across the resulting resampled ensemble is performed.

1.4.3 Parallel models

Most probably you have already noticed, that in the tutorial, no parallel executor is attached to the model object. This
is because our implementation Randomwalk model does not support parallelization. However, a custom user model
might be very computationally expensive and need further parallelization.

1.4.3.1 Parallelize serial model

Provided that the content of the pure Python model init (...) and/or run (...) methods can be split into a list
of independent computationally intensive tasks, one could attach a spux.executors.mpidpy.pool executor to
the model. The instruction how to make use of the Mpi4pyPool executor are provided in the preceding sections.
A more complicated option to potentially achieve a better performance is to attach a spux.executors.mpidpy.
ensemble executor to the model by splitting the model into independent sub-models and treating all of them as an

34 Chapter 1. Contents

https://gitlab.com/siam-sc/spux/tree/test/spux/likelihoods/ensemble.py

spux Documentation, Release 0.4.0

ensemble of sub-models. The instruction how to make use of the Mpi4pyEnsemple executor are provided in the
preceding sections as well.

For more information, take a look at the corresponding documentation files in Reference.

1.4.3.2 Parallel model executor

In some cases, a custom user model might be either already parallelized, or the model might be written in another
programming language rather than Python. SPUX framework does support such models too.

The easiest, but also the least efficient way to run parallel models is to rely on model evolution through file sys-
tem (saving model states as files in sandboxes), and simply calling os.system ('myparallelmodel <some
args ...>"') from within the self.init (...) and self.run (...). This requires sufficient allocated
computation resources such that all processes from both the SPUX framework and the parallel model run on separate
cores.

An alternative way is a bit more complicated and only minimally itrusive, and can be used provided that MPI
is used for model parallelization. In particular, one can attach the built-in parallel MPI model executor from
spux/executors/mpidpy/mpimodel.py:

from spux.executors.mpidpy.mpimodel import MpidpyModel

With the MpidpyModel (workers=<workers>) executor attached to the model, in the model init (...)
and run (...) methods, thecall self.executor.connect (command) returns an MPI inter-communicator
connected to the parallel workers, each executing the provided shell command command in parallel, analogous to the
manual launch of an MPI:

$ mpiexec —-n <workers> command

You can use this manager-side MPI inter-communicator to workers for simulation control, parameters specification,
predictions retrieval, and saving/loading of the model state, completely circumventing the need for any unnecessary
filesytem related operations.

1.4.3.3 Model communicators

The connection procedure from the parallel workers (model) to the manager depends on the selected connector (see
explanation in the Tuforial) as described below. Independently of the selected connector, in each parallel worker you
will have an access to a corresponding inter-communicator with the manager. You can use this worker-side MPI inter-
communicator to manager for simulation control, parameters acquisition, predictions reporting, and saving/loading of
the model state.

For spawn connector, on the workers (model) side, you have access to an inter-communicator with the manager
returned by calling MPI_Comm_get_parent (). Within the model, the standard MPT_ COMM_WORLD MPI intra-
communicator is available, as in a normal MPI run. Currently spawn is the only fully supported connector for parallel
models using MPIL.

For more information, take a look at the corresponding documentation files in Reference.

1.4.4 Adding a distribution
The easiest way to specify a multivariate distribution is to use a tensor spux/distributions/tensor.py of selected univari-
ate distributions from the scipy.stats module; see an example in Tuzorial.

An example of how to have a joint parameters distribution with correlations, possibly by selecting a multivariate
distribution from the scipy . stats module, can be found in spux/distributions/multivariate.py.

1.4. Customization 35

https://gitlab.com/siam-sc/spux/tree/test/spux/executors/mpi4py/mpimodel.py
https://gitlab.com/siam-sc/spux/tree/test/spux/distributions/tensor.py
https://gitlab.com/siam-sc/spux/tree/test/spux/distributions/multivariate.py

spux Documentation, Release 0.4.0

1.4.5 Adding an error

One custom scenario would be when the observations (both the predictions or the dataset) need to be transformed
before the density of the distribution can be evaluated. To support this, one can provide a custom transform
(self, observations, parameters) method in the error class which performs the required transformations
using the (optional) specified parameters and returns the result.

For an example, look at the error . py in examples/hydro/error.py.

1.4.6 Setting variable types

Sometimes either some of the model parameters or some of the model predictions are represented by integers instead
of floating point numbers. This is often the case if the quantity of interest represents a count of some occurrences, or
a discrete categorical class.

By default, all parameters and predictions are assumed to be of type float. However, optional respective
parameters.types and/or predictions. types files can be provided in the implementations of the prior.
py/error.py/<model>.py scripts and in the constructor of the plotting class MatPlotLib.

The format of the files requires to specify two columns, with entries listing <variable name> and <variable
type>, for instance:

prey int
prey_kFood double

The parameters.types file is used in the examples/IBM_2species example to round integer valued parameters
inprior.py,error.py and ibm.py, since inconsistencies can arise depending on the type of sampler.

The predictions.types file is used in the plotting routines in the constructor of the MatPlotLib class. This
is useful, for example, to plot the error distributions for integer-valued observations (model predictions or collected
dataset).

Please refer to examples/IBM_2species for a specific usage example of these files.

1.4.7 Adding a sampler

In order to add a custom sampler (in addition to existing samplers, e.g. MCMC and EMCEE), you need to derive a
new sampler class the base Sampler class in spux.samplers.sampler. For the source code of the sampler
base class, please refer to spux/samplers/sampler.py.

In particular, the new sampler class must have the following methods:
e __init__ (self, ...) -constructor to set sampler properties (can be skipped),
e init (self, ...) -sampler initialization routine (can be empty),
* pickup (self) -return sampler pickup information (e.g. a dictionary with needed entries),
e draw (self, sandbox, seed) -return samples as pandas.Dataframe and the associated info.

In most use cases, sampler will need to have an assigned likelihood (which is assigned in the base class method
sampler.assign (...)). Theinit (...) method can be used to initialize as many likelihoods as the number
of needed concurrent chains (assuming self.chains is set in the constructor):

self.likelihoods = [copy (self.likelihood) for index in range (self.chains)]

The following code can be used to properly set up likelihoods in draw (...):

36 Chapter 1. Contents

https://gitlab.com/siam-sc/spux/tree/test/examples/hydro/error.py
https://gitlab.com/siam-sc/spux/tree/test/examples/IBM_2species
https://gitlab.com/siam-sc/spux/tree/test/examples/IBM_2species
https://gitlab.com/siam-sc/spux/tree/test/spux/samplers/sampler.py

spux Documentation, Release 0.4.0

for chain, likelihood in enumerate (self.likelihoods):

label = 'C ' % chain

chain_sandbox = sandbox.spawn (label) if self.sandboxing else None

chain_seed = seed.spawn (chain, name=label)

likelihood.setup (chain_sandbox, self.verbosity - 2, chain_seed, self.informative,

— self.trace, self._feedback)

Finally, the list of all likelihoods can be passed to the executor for evaluation, together with the list of corresponding

parameters for each of them:

results, timings = self.executor.map (likelihoods, parameters)

Note, that to allow maximum flexibility, the self.executor is avaible within both init
(...) methods.

(...) and draw

For an example implementation, please refer to the source code of the EMCEE sampler at spux/samplers/emcee.py.

Work in progress.

1.4.8 Adding a likelihood

Work in progress.

1.5 Reference

1.5.1 spux package

SPUX: Scalable Package for Uncertainty Quantification in X

1.5.1.1 Subpackages

1.5.1.1.1 spux.distributions package
1.5.1.1.1.1 Submodules
1.5.1.1.1.2 spux.distributions.distribution module

class spux.distributions.distribution.Distribution
Bases: object

draw (rng)
Draw a random vector using the provided random state ‘rng’.

intervals (alpha=0.99)
Return intervals for the specified centered probability mass.

Intervals are returned for each parameter.

logmpdf£ (label, parameter)
Return marginal log-PDF for the specified parameter.

1.5. Reference

37

https://gitlab.com/siam-sc/spux/tree/test/spux/samplers/emcee.py

spux Documentation, Release 0.4.0

logpdf£ (parameters)
Base method to be overloaded to evaluate the logarithm of the (joint) prob. distr. function of parameters.

‘parameters’ are assumed to be of a pandas.DataFrame type

mpdf (label, parameter)
Return marginal PDF for the specified parameter.

pdf£ (parameters)
Base method to be overloaded to evaluate the (joint) prob. distr. function of parameters.

‘parameters’ are assumed to be of a pandas.DataFrame type

1.5.1.1.1.3 spux.distributions.multivariate module

class spux.distributions.multivariate.Multivariate (distribution, labels,

marginals=None)
Bases: spux.distributions.distribution.Distribution

draw (rng)
Draw a random vector using the provided random state ‘rng’.

intervals (alpha=0.99)
Return intervals for the specified centered probability mass.

logmpdf (label, parameter)
Return marginal log-PDF for the specified parameter.

logpdf£ (parameters)
Evaluate the logarithm of the (joint) prob. distr. function of (covariate) parameters.

‘parameters’ are assumed to be of a pandas.DataFrame type

mpdf£ (label, parameter)
Return marginal PDF for the specified parameter.

pdf (parameters)
Evaluate the (joint) prob. distr. function of (covariate) parameters.

‘parameters’ are assumed to be of a pandas.DataFrame type

1.5.1.1.1.4 spux.distributions.tensor module

class spux.distributions.tensor.Tensor (distributions, types_of keys=None)
Bases: spux.distributions.distribution.Distribution

draw (rng)
Draw a random vector using the provided random state ‘rng’.

intervals (alpha=0.99)
Return intervals for the specified centered probability mass.

logmpdf£ (label, parameter)
Return marginal log-PDF for the specified parameter.

logpdf£ (parameters)
Evaluate the logarithm of the (joint) prob. distr. function of the tensorized, i.e. assuming independence,
random variables ‘parameters’.

‘parameters’ are assumed to be of a pandas.Series type

38 Chapter 1. Contents

spux Documentation, Release 0.4.0

mpdf (label, parameter)
Return marginal PDF for the specified parameter.

pdf (parameters)
Evaluate the (joint) prob. distr. function of the tensorized, i.e. assuming independence, random variables
‘parameters’.

‘parameters’ are assumed to be of a pandas.Series type

1.5.1.1.2 spux.drivers package
1.5.1.1.2.1 Submodules
1.5.1.1.2.2 spux.drivers.java module

class spux.drivers. java.Java (jvmpath=None, classpath=None, jvmargs="", jymkwargs={})
Bases: object

Convenience wrapper for Python Java bindings.

WARNING: due to underlying Python Java bindings library limitations, you cannot run a single Python process
that uses this driver at least twice but with different Java classpaths. The subsequent classpaths won’t correctly
load.

get_class (name)
Return the java class ‘name’ from loaded java jar

jpype = None

classmethod load (state)

Take ‘state’ (of the model) from save(), i.e. as numpy uint8 array, and return ‘buff’ in byte to be passed to
the java user code

classmethod save (buff)
Return ‘state’ (of the model) as numpy uint8 array when ‘buff’ (the state of the model from the user code)
is in binary format

started_in = {}

classmethod state (size)
Return ‘state’ as jByteArray of given ‘size’

1.5.1.1.3 spux.executors package

1.5.1.1.3.1 Subpackages

1.5.1.1.3.2 spux.executors.balancers package
1.5.1.1.3.3 Submodules

1.5.1.1.3.4 spux.executors.balancers.adaptive module

class spux.executors.balancers.adaptive.Adaptive
Bases: spux.executors.balancers.balancer.Balancer

1.5. Reference 39

spux Documentation, Release 0.4.0

Derived class to establish particle routings.

ensembles (indices, workers)
Initially distribute particles to ensembles according to how many ‘workers’ are available.

routings (ensembles, indices)
Compute routings of particles from current particle ‘ensembles’ and specified ‘indices’

1.5.1.1.3.5 spux.executors.balancers.balancer module

class spux.executors.balancers.balancer.Balancer
Bases: object

Base class for balancing network traffic due to killing and cloning (resampling) of particles.

sources (routings)
Compute sources for the particles to be resampled according to the specified routings.

traffic (routings)
Compute network traffic (moves, copies, etc.) from routing of particles.

verbosity = 0

1.5.1.1.3.6 spux.executors.mpidpy package

1.5.1.1.3.7 Subpackages

1.5.1.1.3.8 spux.executors.mpidpy.connectors package
1.5.1.1.3.9 Submodules

1.5.1.1.3.10 spux.executors.mpi4py.connectors.legacy module

class spux.executors.mpidpy.connectors.legacy.Legacy (verbosity=0)
Bases: spux.executors.mpid4py.connectors.split.Split

Class to establish workers MPI processes when dealing with legacy MPI implementations.

static accept (remote_leader, verbosity)
Establish connection on manager side.

bootup (contract, task, resource, root, verbosity)
Inter-connect manager with the number of requested workers by returning leader rank.

static connect (remote_leader, peers)
Establish connection on worker side.

static disconnect (workers, verbosity)
Interrupt connection.

static shutdown (port, verbosity)
Finalize connector.

40 Chapter 1

. Contents

spux Documentation, Release 0.4.0

1.5.1.1.3.11 spux.executors.mpi4py.connectors.spawn module

class spux.executors.mpidpy.connectors.spawn.Spawn (verbosity=0)

Bases: object
Class to establish workers MPI processes by spawning of new processes.

static accept (port, verbosity)
Establish connection.

barrier ()

bootup (contract, task, resource, root=0, verbosity=0)
Return means of inter-communication along a possible hierarchy of processes.

static connect (port, peers)
Establish connection on worker side.

static disconnect (workers, verbosity)
Interrupt connection.

init (resources)

static shutdown (port, verbosity)
Finalize connector.

1.5.1.1.3.12 spux.executors.mpidpy.connectors.split module

class spux.executors.mpidpy.connectors.split.Split (verbosity=0)

Bases: object
Class to establish workers MPI processes by using server/client mode through ports.

static accept (port, verbosity)
Establish connection on manager side.

barrier ()
Split workers from manager, split workers into pools, wait for tasks.

bootup (contract, task, resource, root, verbosity)
Inter-connect manager with the number of requested workers by returning a port.

static connect (port, peers)
Establish connection on worker side.

static disconnect (workers, verbosity)
Interrupt connection.

init (resources)
Initialization for manager: bcast resources and split away from pool slots.

static shutdown (port, verbosity)
Finalize connector.
split ()
Split workers recursively into several pools of workers.

spux.executors.mpidpy.connectors.split.get_ranks (resource, root=None, manager=0)

Compute worker ranks for the current level of resources

1.5. Reference 4

spux Documentation, Release 0.4.0

1.5.1.1.3.13 spux.executors.mpi4py.connectors.utils module

spux.executors.mpidpy.connectors.utils.select (name="auto’, verbosity=0)
Automatically select the connector, or specify it manually by its name.

spux.executors.mpidpy.connectors.utils.universe_address ()
Return rank in MPI COMM_WORLD

1.5.1.1.3.14 spux.executors.mpi4py.connectors.worker module

spux.executors.mpidpy.connectors.worker.universe_address ()
Return rank in MPI COMM_WORLD

1.5.1.1.3.15 Submodules

1.5.1.1.3.16 spux.executors.mpi4py.ensemble module
1.5.1.1.3.17 spux.executors.mpi4py.ensemble_contract module
1.5.1.1.3.18 spux.executors.mpidpy.ensemble_resample module
1.5.1.1.3.19 spux.executors.mpi4py.model module

1.5.1.1.3.20 spux.executors.mpi4py.pool module

1.5.1.1.3.21 spux.executors.mpidpy.pool_contract module
1.5.1.1.3.22 Submodules

1.5.1.1.3.23 spux.executors.executor module

1.5.1.1.3.24 spux.executors.serial module

1.5.1.1.4 spux.io package

1.5.1.1.4.1 Submodules

1.5.1.1.4.2 spux.io.checkpointer module

class spux.io.checkpointer.Checkpointer (period)
Bases: object

check (force=0)
Return timestamp.

init (verbosity)

42 Chapter 1. Contents

spux Documentation, Release 0.4.0

1.5.1.1.4.3 spux.io.dumper module
1.5.1.1.4.4 spux.io.formatter module

spux.io.formatter.compactify (resources)
Improve format of ‘resources’ dictionary.

spux.io.formatter.int £ (number, table=1, empty=0, bar=0)
Integer format with multipliers K, M, etc.

spux.io.formatter.plain (name)
Filter to remove special characters from strings to be used as filenames.

spux.io.formatter.timestamp (time, precise=False, expand=False)
Formats time in seconds into a string of (years and days - only if needed), hours and minutes.

1.5.1.1.4.5 spux.io.loader module
1.5.1.1.4.6 spux.io.parameters module

spux.io.parameters.load (filename, names=None, dtypes=None)

spux.io.parameters.save (data, filename, delimiter="\t")

1.5.1.1.4.7 spux.io.report module

spux.io.report.report (instance, method, extras={})
Report name, method, root, sandbox, and any specified extras provided verbosity is enabled.

1.5. Reference 43

spux Documentation, Release 0.4.0

1.5.1.1.5 spux.likelihoods package

1.5.1.1.5.1 Submodules

1.5.1.1.5.2 spux.likelihoods.direct module
1.5.1.1.5.3 spux.likelihoods.ensemble module
1.5.1.1.5.4 spux.likelihoods.likelihood module
1.5.1.1.5.5 spux.likelihoods.pf module
1.5.1.1.5.6 spux.likelihoods.replicates module
1.5.1.1.6 spux.models package

1.5.1.1.6.1 Submodules

1.5.1.1.6.2 spux.models.ibm module
1.5.1.1.6.3 spux.models.model module
1.5.1.1.6.4 spux.models.randomwalk module
1.5.1.1.6.5 spux.models.randomwalk_numba module
1.5.1.1.6.6 spux.models.straightwalk module
1.5.1.1.7 spux.plot package

1.5.1.1.7.1 Submodules

1.5.1.1.7.2 spux.plot.mpl module

1.5.1.1.7.3 spux.plot.mpl_palette_pf module
1.5.1.1.7.4 spux.plot.mpl_utils module

spux.plot.mpl_utils.brighten (color, factor=0.7)
Create a new solid color which is slighly brighter.

spux.plot.mpl_utils.figname (save, figpath="fig’, suffix=", extension="pdf")

Generate figure name using the format ‘figpath/pwd_suffix.extension’.

44

Chapter 1. Contents

spux Documentation, Release 0.4.0

1.5.1.1.7.5 spux.plot.profile module

spux.plot.profile.callgraph (pstatsfile, root=None, threshold=10, outputdir="fig’)
Generate callgraph from profile stats using gprof2dot.

spux.plot.profile.figname (figpath="fig’, suffix="", extension="pdf’)
Generate figure name using the format ‘figpath/pwd_suffix.extension’.

spux.plot.profile.report (pstatsfile, outputdir="fig’)
Export profile information into a text file.

1.5.1.1.8 spux.processes package
1.5.1.1.8.1 Submodules
1.5.1.1.8.2 spux.processes.ornsteinuhlenbeck module

class spux.processes.ornsteinuhlenbeck.OrnsteinUhlenbeck (fau)
Bases: object

Class for Ornstein-Uhlenbeck process.

evaluate (7, mmg)
Evaluate Ornstein-Uhlenbeck process at time ‘t’.

init (1, xi)

1.5.1.1.8.3 spux.processes.precipitation module

class spux.processes.precipitation.Precipitation(g,a,b,c,xi_I,xi_2)
Bases: object

Class for Precipitation process.
evaluate (xi)

inverse (x)

1.5.1.1.8.4 spux.processes.wastewater module

class spux.processes.wastewater.Wastewater (zeta, chi)
Bases: object

Class for waste water process.

evaluate (f)

1.5. Reference

45

spux Documentation, Release 0.4.0

1.5.1.1.9 spux.report package

1.5.1.1.9.1 Submodules

1.5.1.1.9.2 spux.report.generate module
1.5.1.1.10 spux.samplers package
1.5.1.1.10.1 Submodules

1.5.1.1.10.2 spux.samplers.emcee module
1.5.1.1.10.3 spux.samplers.forecast module
1.5.1.1.10.4 spux.samplers.mcmc module
1.5.1.1.10.5 spux.samplers.sampler module
1.5.1.1.11 spux.utils package

1.5.1.1.11.1 Submodules

1.5.1.1.11.2 spux.utils.annotate module

spux.utils.annotate.annotate (data, labels, time, auxiliary=None)
Annotate data array with the given labels (with an option for auxiliary information).

Optional auxiliary object of any type can be provided and will be passed to the error model, but will not be
stored in the corresponding ‘info’ as the model prediction, and hence will be node-local. In the error model,
the ‘prediction’ will then be a dictionary of the form: {‘scalars’ : predictions, ‘auxiliary’ : auxiliary}. This
is useful for large non-scalar model outputs, such as vectors or multi-dimensional arrays (e.g. xarray’s). Any
additional (i.e outside the error model) access of such auxiliary information is not supported. As such data is
often very large, the recommended option is to keep the trace of all sandboxes and perform additional a posteriori
post-processing.

1.5.1.1.11.3 spux.utils.assigh module
1.5.1.1.11.4 spux.utils.debug_inparallel module
1.5.1.1.11.5 spux.utils.environment module
1.5.1.1.11.6 spux.utils.evaluations module

spux.utils.evaluations.construct (instance, tasks)
Recursively construct model evaluations report.

46 Chapter 1. Contents

spux Documentation, Release 0.4.0

1.5.1.1.11.7 spux.utils.progress module

class spux.utils.progress.Progress (prefix, steps, length=20, caption="Progress:)
Bases: object

Class for update’able progress bar for the command line.
finalize ()

increment (diff=1)

init ()

message (message)

reset ()

update (step)

1.5.1.1.11.8 spux.utils.sandbox module
1.5.1.1.11.9 spux.utils.seed module

class spux.utils.seed.Seed (seed=0, name="root’)
Bases: object

Class to generate independent seeds for random number generators.

cumulative ()
Get cumulative seed.

spawn (seed, name="noname’)
Spawn new seed based on current state (append lists).

spux.utils.seed.inc(a)

spux.utils.seed.pair (a, b)
Construct (pair) two seeds from one [Szudzik].

1.5.1.1.11.10 spux.utils.serialize module
1.5.1.1.11.11 spux.utils.setup module
1.5.1.1.11.12 spux.utils.shell module

spux.utils.shell.execute (command, directory=None, verbosity=1, executable=None)
Execute an application command (including any arguments) in a command line shell.

Parameter verbosity: 0O - no output to the console 1 - print only error messages (default) 2 - prints the command
being executed and the result

Returns (process returncode, standard output, error output)

1.5. Reference 47

spux Documentation, Release 0.4.0

1.5.1.1.11.13 spux.utils.synthesize module
1.5.1.1.11.14 spux.utils.testing module
1.5.1.1.11.15 spux.utils.timer module

class spux.utils.timer.Timer
Bases: object

current (format=0)
pause ()
start ()

timestamp ()

1.5.1.1.11.16 spux.utils.timing module

class spux.utils.timing.Timing
Bases: object

start (name)

time (name)

1.5.1.1.11.17 spux.utils.transforms module

spux.utils.transforms. flatten (dictlist)
Flatten a list of dictionaries into a dictionary.

spux.utils.transforms.logmeanstd (logm, logs)
Return the needed quantities to construct stats.lognorm with a specified mean (logm) and standard deviation
(logs).

According to documentation at: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lognorm.html

spux.utils.transforms.numpify (dictionary)
Convert dict with integer keys to numpy array - assume user plays nice.

spux.utils.transforms.pandify (dictionary)
Convert dict with integer keys and pandas DataFrame rows to pandas DataFrame - assume user plays nice.

spux.utils.transforms.rounding (method)
A decorator to map method arguments from float to integer by rounding.

1.5.1.1.11.18 spux.utils.traverse module

spux.utils.traverse.components (root, includes=[’Model’, ’Likelihood’, ’Sampler’])
Auto-magically generate a table for all SPUX components.

spux.utils.traverse.infos (info)
Auto-magically generate a table for info tructure.

48 Chapter 1. Contents

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lognorm.html

spux Documentation, Release 0.4.0

1.6 Gallery

Here we provide a gallery containing selected example results of several applications (a non-exhaustive list) using
SPUX framework for Bayesian inference and uncertainty quantification.

1.6.1 Randomwalk

Domain: demo.

Authors: Jonas Sukys (Eawag, Switzerland).

Model: one-dimensional random walk (built-in).
Language: Python.

Cluster: EULER (ETH Zurich, Switzerland) - 129 cores.

A simple one-dimensional randomwalk with uncertain origin, drift, and the observation error.

25 A b%%”wf
§ 2.0 ’kf,x,y-“
1s) ;f{%ﬁf

LoV

Fig. 24: Posterior distribution of model predictions for the observational dataset. The shaded orange regions indicate
the log-density of the posterior model predictions distribution at the respective time points, the brown line indicates
the approximate MAP model prediction., the red line represents the exact model prediction values.

Fig. 25: Joint pairwise marginal posterior distribution of origin and drift, including the corresponding Markov chains
from the sampler. Legend: thin semi-transparent gray lines and dots - concurrent chains, orange hexagons - histogram

@ 9

of the joint pairwise marginal posterior parameters samples, blue “+” - initial parameters, brown “0” - approximate
MAP parameters, red “x” - the exact parameters.

1.6.2 Linear bucket

Domain: hydrology.

Authors: Andreas Scheidegger (Eawag, Switzerland).
Model: linear bucket model with stochastic forcing.
Language: R, with rpy2 bindings to Python.

Work in progress.

1.6. Gallery 49

spux Documentation, Release 0.4.0

1.6.3 Stochastic inputs

Domain: hydrology.

Authors: Jonas Sukys (Eawag, Switzerland).
Model: hydrological model with stochastic inputs (built-in).

Language: Python, with numba compiled C code for computationally expensive parts.
Cluster: EULER (ETH Zurich, Switzerland) - 1121 cores.

Publication: Del Giudice, D. et al., (2016) “Describing the catchment-averaged precipitation as a stochastic process
improves parameter and input estimation; Water Resources Research. John Wiley & Sons, Ltd, 52(4), pp. 3162-3186.

doi: 10.1002/2015WRO017871.

0.150

0.125

0.100

t0.075

+0.050

t0.025

0.000

Fig. 26: The first dataset and the associated heteroscedastic error model for the input (precipitation) and the output

(discharge) measurements.

02 MAP
-25 posterior percentiles (5 - 95)
0.20 o observations
0.15
x
0.10
° o
0.05 o %
o
ODO o | oo o
0.00

0.0 0.5 1.0 1.5 2.0

1e5 time le4
1.25 MAP
posterior percentiles (5 - 95)
1.00
0.75
0
0.50
|
0.25

0.00

0.0 0.5 1.0 1.5 2.0

time led

102

10!

10°

1074

103

1.25

1.00

0.75

0.50

0.25

0.00

le2

MAP
posterior percentiles (5 - 95)
observations

!

\)
" PR S
/7N OV

.0 0.5 1.0 15 2.0
le-11 time le4

MAP
posterior percentiles (5 - 95)

.0 0.5 1.0 15 2.0
time led

107t
102
MAP
20 posterior percentiles (5 - 95)
1072 ~1073
0.0 0.5 1.0 15 2.0
time led
1012
1011
1010

Fig. 27: Plots of the posterior distribution of model predictions for an observational dataset above, including auxiliary
posterior distributions for rainfall potential ξ, reservoir level S, and the water volume discrepancy $\Delta

VS.

Work in progress.

1.6.4 Stochastic parameters

Domain: hydrology.

Authors: Marco Bacci, Jonas §ukys (Eawag, Switzerland).

Model: hydrological model with stochastic time-dependent parameters (Superflex).

50

Chapter 1.

Contents

spux Documentation, Release 0.4.0

Language: Fortran, with ct ypes bindings of the compiled Fortran model library to Python.

Work in progress.

1.6.5 Prey-Predator

Domain: aquatic ecology.

Authors: Jonas §ukys, Nele Schuwirth, Peter Reichert (Eawag, Switzerland), Mira Kattwinkel (University of
Koblenz-Landau, Germany).

Model: prey-predator model using stochastic individual based model with synthetic dataset (IBM-Bugs).
Language: Java, with JPype bindings to Python.
Cluster: EULER (ETH Zurich, Switzerland) - up to 1000 cores.

Publication (preprint available at http://arxiv.org/abs/1711.01410):

éukys, J. and Kattwinkel, M.

"SPUX: Scalable Particle Markov Chain Monte Carlo

for uncertainty quantification in stochastic ecological models".
Advances in Parallel Computing - Parallel Computing is Everywhere,
I0S Press, (32), pp. 159-168, 2018.

25.0 25.2 25.4 25.6 256 26.0 26.2 264
prey_kDens

Fig. 28: Marginal posterior distribution of prey_kDens and predator_kDens parameters, including the corre-
sponding MCMC chain from the sampler. Legend: green “+” - initial parameters.

Work in progress.

1.6.6 River invertebrates

Domain: aquatic ecology.

Authors: Marco Bacci, Nele Schuwirth, Peter Reichert, Jonas §ukys (Eawag, Switzerland) Mira Kattwinkel (U
Koblenz-Landau, Germany).

Model: river invertebrates mesocosm modeling using stochastic IBMs (IBM-Bugs).
Model: Java, with JPype bindings to Python.
Cluster: EULER (ETH Zurich, Switzerland) - 736 cores.

Work in progress.

1.6.7 DATALAKES

Domain: hydrology and data science.

1.6. Gallery 51

http://arxiv.org/abs/1711.01410

spux Documentation, Release 0.4.0

Authors: Artur Safin, Jonas §ukys (Eawag, Switzerland).

Model: DATALAKES - a scalable UQ framework for predicting lake dynamics (MITgcm).
Language: Fortran, with ctypes bindings of the compiled Fortran model library to Python.
Cluster: Daint (Swiss Supercomputing Center (CSCS), Switzerland).

Work in progress.

1.6.8 In-stream herbicides

Domain: aquatic ecology.

Authors: Peter Reichert, Fabrizio Fenizia, Lorenz Ammann, Jonas Sukys (Eawag, Switzerland).
Model: in-stream herbicide concentration dynamics (Superflex).

Language: Fortran, with ctypes bindings of the compiled Fortran model library to Python.

Work in progress.

1.6.9 Urban hydrology

Domain: urban hydrology.

Authors: Joao Leitao, Andreas Scheidegger, Jorg Rieckermann, Jonas Sukys.
Model: urban hydrologic model (SWMM).

Language: C, with Swig wrapper for Python.

Work in progress.

1.6.10 Solar dynamo

Domain: physics and data science

BISTOM - calibration of the solar dynamo simulations.

Work in progress.

1.7 Contributing

The source code is available at the GitLab repository: https://gitlab.com/siam-sc/spux.
Contributions are welcome, and they are greatly appreciated!
Every little bit helps, and credit will always be given.

1.7.1 The SPUX’onic way

When contributing, please always make an effort to adhere the SPUX’onic coding style and ethics:

¢ think (at least) twice about proper variable names:

52 Chapter 1. Contents

https://gitlab.com/siam-sc/spux

spux Documentation, Release 0.4.0

— avoid abbreviations and slang,
— prioritize descriptive single-word variables to lengthy “sentence”-variables,
* use docstrings for each class and method you implement,
* place technical methods into spux.utils or spux.io,
 always use the verbosity level filter for any (carefully formatted, of course) output to console,

* always clean up (remove debug code and unnecessary comments) before merging to test branch.

1.7.2 Types of contributions

You can contribute in many ways, listed in the following paragraphs.

1.7.2.1 Report bugs

Report bugs at https://gitlab.com/siam-sc/spux/issues
If you are reporting a bug, please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

* Detailed steps to reproduce the bug.

1.7.2.2 Fix bugs

Look through the GitLab issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants to
implement it.

1.7.2.3 Implement features

Look through the GitLab issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

1.7.2.4 Write documentation
SPUX could always benefit from more documentation, whether as part of the official spux docs, in docstrings, or even
on the web in blog posts, articles, and such.

To contribute to the official spux docs, checkout the the spux repository and look through all the files listed in the
MANIFEST. in file. The auto-generated documentation from all these files is placed under the docs/ directory,
where static files such as plots, tables, etc. are located under docs/_static (please respect the current directory
structure). When adding your new contributions to the documentation, please follow the current style and make sure
that:

» Code snippet uses the code block (instead of a standard paragraph text).
* Code snippet has no remaining programmer comments, notes, or legacy code.

* The line lengths of the code snippet do not protrude beyond the right margin of the paragraph.

1.7. Contributing 53

https://gitlab.com/siam-sc/spux/issues

spux Documentation, Release 0.4.0

1.7.2.5 Submit feedback

The best way to send feedback is to file an issue at https://gitlab.com/siam-sc/spux/issues

If you are proposing a feature:

 Explain in detail how it would work.
» Keep the scope as narrow as possible, to make it easier to implement.

 Contributions are very welcome and will make the framework better for you and other users.

1.7.3 Get started!

Ready to contribute? Here’s how to set up spux for local development.

1. Fork the spux repo on GitLab.

2. Clone your fork locally:

$ git clone git@gitlab.com:siam-sc/spux.git
$ cd spux/

3. (Optional) Install virtualenv and virtualenvwrapper (and source paths, if needed):

’$ pip install virtualenvwrapper

4. (Optional) Install your local copy into a virtualenv:

$ mkvirtualenv spux
$ workon spux

5. Set up your fork for local development (use —user at the end if needed):

$ pip install -r requirements_dev.txt
$ python setup.py develop

6. Create a branch for local development (name it dev_username for private development branch):

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

You can run tests within your environment:

$ flake8 spux tests examples
$ pytest -m "not mpi" tests
$ mpiexec -n 1 —--oversubscribe pytest -m "mpi" tests

Or, alternatively (a slower approach), using tox to include testing with Python and MPI versions:

$ tox

To get flake8 and tox, just pip install them into your virtualenv.

7. Commit your changes and push your branch to GitLab:

$ git add
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

54

Chapter 1

. Contents

https://gitlab.com/siam-sc/spux/issues

spux Documentation, Release 0.4.0

8. Make sure all tests pass in the GitLab-CI as well.
9. Submit a merge request (e.g. to the “test” branch) through the GitLab website.

10. Maintainers: review merge request and activate “Merge automatically when pipeline succeeds”.

1.7.4 Merge requests

Before you submit a merge request, check that it meets these guidelines:
1. The merge request should include tests.

2. If the merge request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The merge request should work for Python 3.7.

1.7.5 Tips

* To run only non-MPI tests:

’$ pytest -m "not mpi" tests

or only short module tests, excluding long integration tests:

’$ pytest -m "not mpi and not integration" tests

or only long integration tests using MPI:

’$ pytest —-m "mpi and integration" tests

* To run tests from a single file:

’$ pytest tests/test_spux.py

or a single test function:

’$ pytest tests/test_spux.py::test_imports

* To add dependency, edit appropriate *requirements variable in the setup. py file and re-run:

’$ python setup.py develop

Check if this requirement should be also included in the requirements_dev.txt file.

1.7.6 Deploying

A reminder for the maintainers on how to deploy.
* Make sure all issues on GitLab associated with this release milestone are:
— either fixed and closed with changes merged into the test branch,
— or re-assigned to future release milestones.
* Review documentation and make sure all examples and statements are up to date:

— runmake docs_html in the terminal and check generated html pages carefully,

1.7. Contributing 55

https://gitlab.com/siam-sc/spux/pipelines

spux Documentation, Release 0.4.0

— check all source code snippets that use specific line numbers and fix them,
— check if additional examples, results, or publications should be added for the gallery,

— check if additional contributions should be added in the credits.

Verify all filenames listed in MANIFEST. in, including all needed package directories.
* Merge the release version of the code to the release branch, make sure all tests pass.
¢ Make sure all your changes are COMMITTED (!), including:
— anentry in HISTORY . rst,
— (optionally) the development status change in setup . py (see here for options).
* Make sure you have texlive-science, latexmk, and image-magick installed for PDF documentation.
* Make sure your working branch is release.

Then run in the terminal:

$ pip install -U -r requirements_rtd.txt

$ make docs

$ make clean

$ bumpversion patch # possible: major / minor / patch; might need —--allow-dirty
$ git push

$ git push --tags

Afterwards, GitLab-CI will automatically deploy the release to PyPI and ReadTheDocs if tests pass. Then merge the
release branch into the master and test branches.

1.8 Parallelization

Here we briefly describe parallelization algorithms, including communication patterns, load balancing strategies, and
experimental results for parallelization profiling and scaling.

1.8.1 Communication patterns

1.8.2 Profiling and scaling

1.9 Credits

1.9.1 Development Lead

« Jonas Sukys <jonas.sukys @eawag.ch>

* Marco Bacci <marco.bacci @eawag.ch>

1.9.2 Contributors

* Uwe Schmitt <uwe.schmitt@id.ethz.ch>
* Mikotaj Rybinski <mikolaj.rybinski @id.ethz.ch>

* Andreas Scheidegger <andreas.scheidegger @eawag.ch>

56 Chapter 1. Contents

https://pypi.org/classifiers/
https://gitlab.com/siam-sc/spux/pipelines
mailto:jonas.sukys@eawag.ch
mailto:marco.bacci@eawag.ch
mailto:uwe.schmitt@id.ethz.ch
mailto:mikolaj.rybinski@id.ethz.ch
mailto:andreas.scheidegger@eawag.ch

spux Documentation, Release 0.4.0

Master Parallel workers

broadcast proposal
parameters 0,,

S
!

| 0. | Iget parameters Bml

O O initialize p

replicate particles

-] O [s
o B
1 O
o

| get next time ¢; |<—

—
—
—

|run model up to t; |

o
(¢

O
o

o

)

| compute weights |

| gather weights P]"LbS

@ O
broadcast next
| observation time ti

a :
Y
last t;?

N
resample based on N
normalized weights . @ @ @ @ @ @ @
!
compute particle
routings
| scatter routings | + *+ + + l get routings |
L] |
delete extinct
T @ @ @ particles
estimate likelihood o @ & @ @ s start non-blocking

e sends and receives
— /\ AN ;
replicate local
' O O . O O O . particles
!
‘ o0 i\’ o O O ‘ replicate received

particles

|
OO . ‘ O O O ‘ delete sent

orphan particles

@ O O O O O O O |re-seed particles|
L

Fig. 29: Adaptive parallel resampling algorithm used in the SPUX framework.

1.9. Credits 57

spux Documentation, Release 0.4.0

M ‘] R
0 T LRI IR T I Y™ evaluate
1 I TN TN VU TN T | | MM bcast parameters
2 TN T T T TR TN | | scatter particles
3 NI TN | | init
4 T NN TN IR L (N TT .
5 TR Y IR TN Ty Init sync
6 TR NI TTER NIRRT bcast time
7 TN TN IO IO TN NN PENUM UM N W || mEEN routings
§ 8 OO O RO O OO0 I O | oy < atter routings
X 9 NI EE TR IR NN T .
g 10 NN IN TN TN I TN NN N O TN I OE O wait
11 O I U IO TN DR N N IR I I | | resample
12 T IR NI TR NN resample sync
13 (NN ENTVERTRT N VR NR T] m——"
14 IR NN (NN INTIT
15 N UN I O W OO SN W i | | ™= observe
16 /N N DB DN TN TN DT NN N0 DN Ny | | likelihoods
17 T NIRRT I run sync
18 NI AR NN IR TN Ry -
19 NI Ty nres W gather likelihoods
0 10 20 30 40 50
time [s]

Fig. 30: Timestamps of within a single Particle Filter likelihood evaluation.

10° 10 107 10°
number of workers

Fig. 31: Strong parallel scaling on Euler supercomputer at ETH Zurich, Switzerland.

58 Chapter 1. Contents

spux Documentation, Release 0.4.0

* Artur Safin <artur.safin@eawag.ch>

* Mira Kattwinkel <kattwinkel-mira@uni-landau.de>
* Marco Dal Molin <marco.dalmolin@eawag.ch>

» Simone Ulzega <ulzg @zhaw.ch>

* Peter Reichert <peter.reichert @eawag.ch>

1.9.3 Acknowledgments

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage template.

1.10 History

1.10.1 0.4.0 (2019-06-12)

* Improvements in sandboxing, built-in serialization, report generation, plotting, thinning, support for legacy
connector, and improvements in inference continuation procedure.

1.10.2 0.3.0 (2019-04-10)

e Many leaps forward: improvements in applications, local sandboxes, plotting, and many more.

1.10.3 0.2.1 (2019-03-06)

* Initial release for the spux project kickoff.

1.10. History 59

mailto:artur.safin@eawag.ch
mailto:kattwinkel-mira@uni-landau.de
mailto:marco.dalmolin@eawag.ch
mailto:ulzg@zhaw.ch
mailto:peter.reichert@eawag.ch
https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage

spux Documentation, Release 0.4.0

60 Chapter 1. Contents

CHAPTER 2

Indices and tables

* genindex
* modindex

e search

61

spux Documentation, Release 0.4.0

62 Chapter 2. Indices and tables

Python Module Index

S

spux,
sSpux.
Spux.
Spux.
Spux.
Spux.
Spux.
Spux.
Spux.
Spux.
spux
Spux.
spux.
Spux.

spux
sSpux.
Spux.
Spux.

Spux.
Spux.
Spux.
Spux.
Spux.
spux.
Spux.
spux
Spux.
sSpux.
sSpux.
Spux.
Spux.
Spux.
Spux.

37

distributions, 37
distributions.distribution, 37

distributions.multivariate, 38
distributions.tensor, 38

drivers, 39

drivers. java, 39

executors,

executors
executors

.executors

executors
executors
executors

40

.executors

41
executors
41
executors
42
executors
42
io,42
io
io
io
io

39

.mpidpy.
.mpidpy.
.mpidpy.

.mpidpy.

likelihoods, 44

models, 44

.plot, 44

.balancers, 39
.balancers.adaptive, 39
.balancers.balancer, 40
.mpidpy, 40
.mpidpy.
.mpidpy.

connectors,

connectors

connectors.

connectors.

connectors

connectors

.checkpointer, 42
.formatter, 43
.parameters, 43
.report,43

plot.mpl_palette_pf, 44

plot.mpl_utils, 44

plot.profile, 45
processes, 45
processes.ornsteinuhlenbeck, 45
processes.precipitation,45
processes.wastewater, 45

40

.legacy,

spawn,

split,

.utils,

.worker,

Spux.
Spux.
.utils, 46
annotate, 46
assign, 46
debug_inparallel, 46
environment, 46
evaluations, 46
progress, 47

seed, 47

shell, 47

timer, 48

timing, 48
transforms, 48
traverse, 48

spux

Spux.
SpuUX.
.utils.

spux

Spux.
.utils.

spux

Spux.
Spux.
.utils.

spux

Spux.
.utils.

sSpux

SpuUx.
Spux.

report, 46
samplers, 46

utils.
utils.

utils.

utils.
utils.

utils.

utils.
utils.

63

spux Documentation, Release 0.4.0

64 Python Module Index

Index

A construct () (in module spux.utils.evaluations), 46
accept () (spux.executors.mpidpy.connectors.legacy.Legafymulative () (spux.utils.seed.Seed method), 47
static method), 40 current () (spux.utils.timer.Timer method), 48

accept () (spux.executors.mpi4py.connectors.spawn.SpawD
static method), 41
accept () (spux.executors.mpidpy.connectors.split.Split disconnect () (spux.executors.mpidpy.connectors.legacy.Legacy

static method), 41 static method), 40
Adaptive (class in spux.executors.balancers.adaptive), disconnect () (spux.executors.mpid4py.connectors.spawn.Spawn
39 static method), 41
annotate () (in module spux.utils.annotate), 46 disconnect () (spux.executors.mpidpy.connectors.split.Split
static method), 41
B Distribution (class in
Balancer (class in spux.executors.balancers.balancer), spux.distributions.distribution), 37
40 draw () (spux.distributions.distribution. Distribution
barrier () (spux.executors.mpidpy.connectors.spawn.Spawn method), 37
method), 41 draw () (spux.distributions.multivariate. Multivariate
barrier () (spux.executors.mpi4py.connectors.split.Split method), 38
method), 41 draw () (spux.distributions.tensor.Tensor method), 38
bootup () (spux.executors.mpidpy.connectors. legacy.Legag
method), 40
bootup () (spux.executors.mpidpy.connectors.spawn.Spanemnsembles () (spux.executors.balancers.adaptive.Adaptive
method), 41 method), 40
bootup () (spux.executors.mpidpy.connectors.split.Split evaluate () (spux.processes.ornsteinuhlenbeck.OrnsteinUhlenbeck
method), 41 method), 45
brighten () (in module spux.plot.mpl_utils), 44 evaluate () (spux.processes.precipitation.Precipitation
method), 45
C evaluate () (spux.processes.wastewater.Wastewater
method), 45

callgraph () (in module spux.plot.profile), 45 ’)
check () (spux.io.checkpointer.Checkpointer method), €¥ecute () (inmodule spux.utils.shell), 47

42 F

Checkpointer (class in spux.io.checkpointer), 42

compactify () (in module spux.io.formatter), 43 figname () (in module spux.plot.mpl_utils), 44

components () (in module spux.utils.traverse), 48 figname () (in module spux.plot.profile), 45

connect () (spux.executors.mpidpy.connectors.legacy.Legéynalize () (spux.utils.progress.Progress method), 4
static method), 40 flatten () (in module spux.utils.transforms), 48

connect () (spux.executors.mpi4py.connectors.spawn.Spaén
static method), 41

connect () (spux.executors.mpidpy.connectors.split.Split get_class () (spux.drivers.java.Java method), 39
static method), 41

65

spux Documentation, Release 0.4.0

get_ranks () (in module mpdf () (spux.distributions.multivariate. Multivariate
spux.executors.mpi4py.connectors.split), method), 38
41 mpdf () (spux.distributions.tensor.Tensor method), 38
Multivariate (class in

I spux.distributions.multivariate), 38
inc () (in module spux.utils.seed), 47
increment () (spux.utils.progress.Progress method), N
47 numpify () (in module spux.utils.transforms), 48
infos () (in module spux.utils.traverse), 48
init () (spux.executors.mpidpy.connectors.spawn.Spawn O

o method), 41) i . OrnsteinUhlenbeck (class in
init () (spux.executors.mpi4py.connectors.split.Split spux.processes.ornsteinuhlenbeck), 45
method), 41

init () (spux.io.checkpointer.Checkpointer method), 42 P
init () (;ib;;clf;)oC:ssses.ornstemuhlenbeck.OrnstemUhlen%egl{ £ () (in module spux.utils.seed), 47

init () (spux.utils.progress.Progress method), 47 pzijz f? ((s) EZ: :tl;fltlil:;f ;?;:ZIZZZ?OZ;VZ?), 48
intervals () (spu)c.distributions.distribution.Distributior%o pux. ;) i

method), 37 pdf () (spux.distributions.distribution. Distribution
T 3
intervals () (spux.distributions.multivariate.Multivariate method), .8 . L ..
method), 38 pdf () (spux.distributions.multivariate. Multivariate
. T thod), 38
intervals () (spux.distributions.tensor. Tensor metio) oo
method), 38 pdf () (spux.distributions.tensor.Tensor method), 39

plain () (in module spux.io.formatter), 43

Precipitation (class in
spux.processes.precipitation), 45

Progress (class in spux.utils.progress), 47

J R
Java (class in spux.drivers.java), 39
jpype (spux.drivers.java.Java attribute), 39

intf () (in module spux.io.formatter), 43
inverse () (spux.processes.precipitation.Precipitation
method), 45

report () (in module spux.io.report), 43
report () (in module spux.plot.profile), 45
L reset () (spux.utils.progress.Progress method), 47
)) rounding () (in module spux.utils.transforms), 48
Legacy (class in spux.executors.mpi4py.connectors.legacy)y. o ; ngs () (spux.executors.balancers.adaptive.Adaptive

40 method), 40
load () (in module spux.io.parameters), 43

load () (spux.drivers.java.Java class method), 39
logmeanstd () (in module spux.utils.transforms), 48

logmpdf () (spux.distributions.distribution.Distribution save () (in module spux.io.parameters), 43

save () (spux.drivers.java.Java class method), 39

method), 37 : J
T . . Seed (class in spux.utils.seed), 47
logmpdf () (spux.distributions.multivariate. Multivariate .
method), 38 select () (in module
logmpdf () (spux.distributions.tensor.Tensor method), Zl; ux.executors.mpidpy.connectors.utils),
38 .
logpdf () (spux.distributions.distribution.Distribution shutdown () (spux.executors.mpidpy.connectors.legacy.Legacy
method), 37 static method), 40
logpdf () (spux.distributions.multivariate.Multivariate shutdown (). (spux.executors.mpi4py.connectors.spawn.Spawn
method), 38 static method), 41

shutdown () (spux.executors.mpi4py.connectors.split.Split

logpdf () (spux.distributions.tensor.Tensor method), 38 static method), 41

M sources () (spux.executors.balancers.balancer.Balancer
) method), 40
message () (spux.utils.progress.Progress method), 47 Spawn (class in spux.executors.mpidpy.connectors.spawn),
mpdf () (spux.distributions.distribution. Distribution 41
method), 38

spawn () (spux.utils.seed.Seed method), 47

66 Index

spux Documentation, Release 0.4.0

Split (class in spux.executors.mpidpy.connectors.split),

split ()

41
(spux.executors.mpi4py.connectors.split.Split
method), 41

spux (module), 37

Spux.
Spux.

Spux.

Spux.
.drivers (module), 39

spux

Spux.
.executors (module), 39

spux

sSpux.
Spux.

Spux.

Spux.
Spux.

spux

Spux.
Spux.
Spux.
Spux.
Spux.
Spux.
Spux.

Spux.
.1o0.report (module), 43

sSpux

Spux.
.models (module), 44

spux

sSpux.
.plot.mpl_palette_pf (module), 44

spux

sSpux.
Spux.
Spux.
Spux.

Spux.
.processes.wastewater (module), 45

spux

Spux.
Spux.
sSpux.
sSpux.
spux.
Spux.

.executors.mpidpy.

distributions (module), 37

distributions.distribution (module),
37

distributions.multivariate (module),
38

distributions.tensor (module), 38

drivers. java (module), 39

.balancers (module), 39
.balancers.adaptive (mod-

executors
executors
ule), 39
executors
ule), 40
executors
executors
ule), 40

.balancers.balancer (mod-

.mpidpy (module), 40
.mpidpy.connectors (mod-
connectors.legacy
(module), 40
executors.mpidpy.
(module), 41
executors.mpidpy.
(module), 41
executors.mpidpy.
(module), 42
executors.mpidpy.connectors
(module), 42
io (module), 42
io.checkpointer (module), 42
io.formatter (module), 43
io.parameters (module), 43

connectors.spawn

connectors.split

connectors.utils

.worker

likelihoods (module), 44
plot (module), 44

plot.mpl_utils (module), 44
plot.profile (module), 45
processes (module), 45
processes.ornsteinuhlenbeck
ule), 45
processes.precipitation (module), 45

(mod-

report (module), 46

samplers (module), 46

utils (module), 46

utils.annotate (module), 46
utils.assign (module), 46
utils.debug_inparallel (module), 46

environment (module), 46
evaluations (module), 46
progress (module), 47

seed (module), 47

shell (module), 47
utils.timer (module), 48
utils.timing (module), 48
spux.utils.transforms (module), 48
spux.utils.traverse (module), 48

start () (spux.utils.timer.Timer method), 48
start () (spux.utils.timing.Timing method), 48
started_in (spux.drivers.java.Java attribute), 39
state () (spux.drivers.java.Java class method), 39

T

Tensor (class in spux.distributions.tensor), 38

time () (spux.utils.timing.Timing method), 48

Timer (class in spux.utils.timer), 48

timestamp () (in module spux.io.formatter), 43

timestamp () (spux.utils.timer.Timer method), 48

Timing (class in spux.utils.timing), 48

traffic () (spux.executors.balancers.balancer.Balancer
method), 40

spux.utils.
spux.utils.
spux.utils.
spux.utils.
spux.utils.
Spux.
Spux.

U

universe_address () (in module
spux.executors.mpidpy.connectors.utils),
42

universe_address () (in module
spux.executors.mpidpy.connectors.worker),
42

update () (spux.utils.progress.Progress method), 47

Vv

verbosity (spux.executors.balancers.balancer.Balancer
attribute), 40

W

Wastewater (class in spux.processes.wastewater), 45

Index

67

	Contents
	Introduction
	Summary
	Mathematical concepts
	Algorithms

	Installation
	Main prerequisites
	Additional prerequisites
	Stable release
	Latest release
	From sources

	Tutorial
	Overview
	Editor
	Model stochasticity
	Replicate datasets

	Randomwalk (serial)
	Model description
	SPUX configuration
	SPUX results
	SPUX performance
	Continue sampling
	Informative output
	Profiling

	Randomwalk (parallel)
	SPUX executors
	Launching parallel SPUX
	Remark on MPI libraries
	Remark on executors
	Remark on connectors
	Remark on replicates
	Performance progress
	Parallel scaling
	Profiling (parallel)

	Customization
	Adding a model
	Model test script
	Model execution control
	Model scope variables
	Model sandboxing
	Model stochasticity
	Initial model state
	Auxiliary predictions
	Inputsets for models
	Model state serialization
	Serialization test script

	SPUX executors
	Parallel models
	Parallelize serial model
	Parallel model executor
	Model communicators

	Adding a distribution
	Adding an error
	Setting variable types
	Adding a sampler
	Adding a likelihood

	Reference
	spux package
	Subpackages
	spux.distributions package
	Submodules
	spux.distributions.distribution module
	spux.distributions.multivariate module
	spux.distributions.tensor module

	spux.drivers package
	Submodules
	spux.drivers.java module

	spux.executors package
	Subpackages
	spux.executors.balancers package
	Submodules
	spux.executors.balancers.adaptive module
	spux.executors.balancers.balancer module
	spux.executors.mpi4py package
	Subpackages
	spux.executors.mpi4py.connectors package
	Submodules
	spux.executors.mpi4py.connectors.legacy module
	spux.executors.mpi4py.connectors.spawn module
	spux.executors.mpi4py.connectors.split module
	spux.executors.mpi4py.connectors.utils module
	spux.executors.mpi4py.connectors.worker module
	Submodules
	spux.executors.mpi4py.ensemble module
	spux.executors.mpi4py.ensemble_contract module
	spux.executors.mpi4py.ensemble_resample module
	spux.executors.mpi4py.model module
	spux.executors.mpi4py.pool module
	spux.executors.mpi4py.pool_contract module
	Submodules
	spux.executors.executor module
	spux.executors.serial module

	spux.io package
	Submodules
	spux.io.checkpointer module
	spux.io.dumper module
	spux.io.formatter module
	spux.io.loader module
	spux.io.parameters module
	spux.io.report module

	spux.likelihoods package
	Submodules
	spux.likelihoods.direct module
	spux.likelihoods.ensemble module
	spux.likelihoods.likelihood module
	spux.likelihoods.pf module
	spux.likelihoods.replicates module

	spux.models package
	Submodules
	spux.models.ibm module
	spux.models.model module
	spux.models.randomwalk module
	spux.models.randomwalk_numba module
	spux.models.straightwalk module

	spux.plot package
	Submodules
	spux.plot.mpl module
	spux.plot.mpl_palette_pf module
	spux.plot.mpl_utils module
	spux.plot.profile module

	spux.processes package
	Submodules
	spux.processes.ornsteinuhlenbeck module
	spux.processes.precipitation module
	spux.processes.wastewater module

	spux.report package
	Submodules
	spux.report.generate module

	spux.samplers package
	Submodules
	spux.samplers.emcee module
	spux.samplers.forecast module
	spux.samplers.mcmc module
	spux.samplers.sampler module

	spux.utils package
	Submodules
	spux.utils.annotate module
	spux.utils.assign module
	spux.utils.debug_inparallel module
	spux.utils.environment module
	spux.utils.evaluations module
	spux.utils.progress module
	spux.utils.sandbox module
	spux.utils.seed module
	spux.utils.serialize module
	spux.utils.setup module
	spux.utils.shell module
	spux.utils.synthesize module
	spux.utils.testing module
	spux.utils.timer module
	spux.utils.timing module
	spux.utils.transforms module
	spux.utils.traverse module

	Gallery
	Randomwalk
	Linear bucket
	Stochastic inputs
	Stochastic parameters
	Prey-Predator
	River invertebrates
	DATALAKES
	In-stream herbicides
	Urban hydrology
	Solar dynamo

	Contributing
	The SPUX’onic way
	Types of contributions
	Report bugs
	Fix bugs
	Implement features
	Write documentation
	Submit feedback

	Get started!
	Merge requests
	Tips
	Deploying

	Parallelization
	Communication patterns
	Profiling and scaling

	Credits
	Development Lead
	Contributors
	Acknowledgments

	History
	0.4.0 (2019-06-12)
	0.3.0 (2019-04-10)
	0.2.1 (2019-03-06)

	Indices and tables
	Python Module Index
	Index

